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 Abstract – T/2 soft DFE is based on idea of transforming a classical DFE to a cascade of uncoupled linear devices. 
The crucial component of this cascade is a white filter, which supplies the linear T/2 FSE with uncorrelated samples. 
The adaptive whiting of input sequence is controlled by a stochastic gradient algorithm based on Joint Entropy 
Maximization (JEM-W)  criteria which introduces soft decision properties at the very beginning of blind equalization. 
Soft decisions probably smooth the error surface and allow the algorithm to escape from local minima. 
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1 Introduction 
The classical adaptive equalizers based on minimum 
mean square error (MMSE) criteria use the training with 
an ideal reference to acquire quick and reliable 
parameters adjustment. The sending of a training 
sequence is costly and sometimes is not applicable. 
Generally, any interrupt of transmission of  payload bits 
because of sending a training sequence decreases an 
effective throughput. Besides that, there are systems 
where such training may not be possible or desirable, 
e.g., some broadband access systems [1]. 
   These drawbacks of a classical training can be 
overcome using blind (unsupervised) equalization 
techniques. Instead of ideal reference, equalizer now has 
knowledge of statistical properties of the data signal sent 
by transmitter. One of the best known and the simplest 
blind algorithms is the Godard [2], which has been 
originally designed for a linear  T-spaced FIR filter.  
Besides algorithms dedicated to linear FIR filters, there 
are solutions of blind equalizers using decision feedback 
techniques, which are the subject of the most recent 
investigations.  These solutions can be very efficient on 
channels where the intersymbol interference (ISI) is 
dominantly caused by   severe attenuation distortions  or 
channels with multipath effects.  The idea of using DFE 
as a basic framework for blind equalization is to find 
suboptimal solutions with a better cost-performance 
ratio than optimal but complex solutions based on Bayes 
estimation theory [3].  
   J.Labat, O.Macchi, and C.Laot [4] designed the blind 
equalizer which "…skips the training period" using a 

linearized and decoupled DFE structure where the  
feedback part of DFE is transformed into the all-pole 
white filter (WF) preceding the feedforward T-FIR 
filter. The task of a white filter is to supply the Godard T-
FIR filter with uncorrelated samples    so    that    its    
correlation   matrix   becomes   well conditioned. The 
idea of the described transformation of DFE is to help 
the Godard equalizer at the start of acquisition mode to 
open eye diagram and increase convergence speed. 
Another key point of this solution is the setting of white 
filter coefficients that are what the feedback part of the 
classical DFE (optimal in MMSE sense) needs in the 
tracking mode. The solution [4] will be referred to in 
this paper as a linearized DFE (LDFE). 
   On the other hand, Y.H. Kim and S.Shamsunder [5]  
developed a new class of soft decision blind algorithms 
where the theoretical framework is based on joint 
entropy maximisation.   Using this approach they 
naturally introduced a soft decision device into decision 
feedback structure so one can choose  different 
nonlinear functions for decision device and get relatively 
simple stochastic gradient algorithms for decision 
feedback part of DFE. The soft decisions probably 
smooth the error surface and allow the algorithm to 
escape from local minima. This class of algorithms is 
known as JEM algorithms.  
   The new blind soft DFE presented in this paper 
integrates the key features of  LDFE structure  and  JEM 
algorithms. The LDFE is realised with a fractionally 
spaced (FS) FIR filter instead of TS so the new soft DFE 
yields the well known advantages of FSE as they are 



suppressing timing phase sensitivity and noise 
enhancement. Besides this, the results of most recent 
investigations indicate that the Godard-FSE converges 
globally   under some milder conditions than T-FIR 
filter [6]. Another   important feature of this solution is 
activation of  soft decision algorithm at the start of 
acquisition mode. This is realized by introduction of a 
new version of JEM algorithm (JEM-W)  for white filter 
adjustment. 
   This paper is divided into  five sections. The structure 
of  T/2 soft DFE is described in Section 2. A new 
version of JEM algorithm for a white filter, JEM-W is 
derived in Section 3. The running control and 
performance index are described in Section 4.  The 
results of computer simulations are presented in Section 
5. The comparative performance tests are carried out for 
LDFE and T/2 soft DFE solutions using QPSK, QAM-
16 and QAM-32 signal constellations.  
  
 
2  T/2 soft DFE structure 

T/2 soft DFE design follows the basic idea of 
decoupling and swapping places of the main 
components of the DFE [4]. When the T/2 soft DFE 
reaches the steady state then it is the classical DFE with 
a FS passband feedforward equalizer (FSE-T/2) placed 
upstream and feedback part (RF-T) and hard decision 
device placed downstream. The complex gain control is 
divided into the real automatic gain control and the 
carrier phase tracking second order loop [7]. At the start 
of equalization the FSE-T/2 and RF-T swap places and 
the RF-T becomes a recursive part of the all-pole WF 
preceding FSE-T/2. This order of linear transformers, 
especially, WF and FSE-T/2, is crucial for the blind 
equalization and this regime is called acquisition mode. 
It is important to emphasize that when this cascade 
reaches the steady state (tracking mode) the order of 
linear transformers becomes irrelevant and the whole 
equalizer can be described as a linear equalizer [4]. The 
structure of  T/2 blind DFE is shown in Fig. 1a. 
   The function of WF is to supply FSE-T/2 with 
uncorrelated samples. The input and output sampling 
rates of WF are equal and amount to 2/T samples per 
second. This equality of sampling rates defines the 
structure of WF which is realized by two parallel TS 
white filters, one whiting odd and the other even 
samples. The realization of WF is shown in Fig. 1b. 
   When the blind equalizer reaches the defined 
performance index (MSE level) the T/2 soft DFE 
switches back into decision feedback structure. Since 
there are two TS white filters it is clear that only one of 
them, i.e. coefficients of its recursive part, will be 
translated into the feedback part of the DFE. The 

selection criterion of this transformation is coupled with 
selection of the reference tap of FSE-T/2. It means that 
the selected TS white filter is the one (odd or even) 
which supplies the reference tap with uncorrelated 
samples.   
   The performance index algorithm measures the MSE 
at the output equalizer and compares it with a defined 
threshold to switch DFE from acquisition to tracking 
mode and vice versa. The described T/2 soft DFE uses a 
slightly modified solution of performance index 
algorithm presented in [4]. This algorithm  is not the 
subject of this paper. 
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Fig. 1a. Structures of classical and linearized DFE 
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Fig. 1b. The white filter for T/2 FSE 

 
 
3  JEM-DFE algorithms 
The generic structure of JEM-DFE is illustrated in Fig. 
2. A function g(.), used for soft decision device, should 
be  a strictly monotone, differentiable function with a 
zero memory. The key point of this JEM-DFE is 
introduction  of  this  nonlinear  function  into  the  
adaptive  algorithm  so  that   the  output sequence of 
estimated symbols {r(n)} has the maximum joint 
entropy. 
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Fig.2, Block diagram of the basic soft DFE structure 



   Using this framework a new class of JEM algorithms 
is derived in [5]. Also, after simple approximations, 
some of these  algorithms  become  identical with 
already known algorithms. Two of them are of interest 
for this work and will be repeated here.   
   The basic JEM algorithm is derived by introducing a 
hyperbolic tangent function g(x)=αtanh(βx) into 
gradient descent     
 

JEM-1: bn+1(k) = bn(k) – µ r(n) r(n-k)         (1) 
 

where  bn(k) is k-th  coefficient of RF at  t=nT and µ is a 
step size. 
Using the Taylor series approximation for r(t) and r(t-k) 
in (1) and taking only the first term with α=3 and β=1/3 
JEM-3 algorithm is possible 
 
JEM-3: bn+1(k) = bn(k) – µ v(n) v(n-k)          (2) 
 
This algorithm is exactly the same as the adaptive decor-
relation algorithm used for the white filter in [4]. 
 
JEM-4 is derived in the same way as JEM-1 but using 
the cubic nonlinearity,  g(x) = α x + β x3 , 
 
JEM-4: bn+1(k) = bn(k) + v(n) {1- 3β/α v2(n)} r(n-k)   (3) 
 
In the special case for α=3 and β=1 this algorithm 
coincides with CMA-DFE algorithm. 
   The computer simulations results presented in [5] and 
herein references indicate that introducing soft decisions 
into DFE possibly smoothes the error surface and allows 
the algorithm to easily escape from local minima. This 
suggests the use  of soft decision at the very beginning 
of blind equalization. This idea was the motive to 
propose a new JEM algorithm for WF.    
   A new decorrelation algorithm for white filtering, is 
JEM type and it is also derived from (1). Its current 
value of the joint entropy is approximated using Taylor 
series expansion and taking the two first terms 
  
r(n) r(n-k) ≈ α2β2v(n) v(n-k) - α2β4/3 v3(n) y(n-k) 

   = α2β2v(n) {1 - β2/3 v2(n) } v(n-k)        (4) 
 
JEM-W: bn+1(k)=bn(k)-µv(n){1-β2/3 v2(n)}v(n-k)       (5) 
 
One can see from (3) and (5) that the algorithms JEM-4 
and JEM-W are similar because they use practically the 
same current value of error term. This common feature 
is important at the moment of switching structure: the 
JEM-W is activated at the start of acquisition mode and 
JEM-4 continues to update WF’s coefficients after its 
transformation into decision feedback part of DFE. 

Using these two same type algorithms  T/2 soft DFE 
probably reaches the smooth  error surface which  
removes the local minima.  
   From the point of implementation of algorithms (3) 
and (5) it is impractical to manage parameters α and β 
separately. Because of that, the new common parameter 
BETA for both algorithms is introduced. In the special 
case for αβ=9 the parameter BETA is 
BETA=3β/α=β2/3. The BETA makes rounding of 
nonlinear functions, which is critical for soft DFE blind 
activation mode and also for steady state MSE. The 
optimisation and selection of BETA is carried out in 
Section 5. 
 
 
4  Performance index monitoring  
As emphasized above, the equalizer has two basic 
modes of operation: the acquisition and tracking mode. 
On the other hand, the acquisition mode, which is 
crucial for equalizer's activation, has two phases of 
operation one of which is a blind acquisition and another 
soft decision acquisition. Using this terminology the 
activation of the T/2 soft DFE can be summarized as it is 
done in the following Table 1, 
  
   Table 1 

     T/2 soft DFE 
STRUCTURE 

PHASE of operation and 
ALGORITHM 

1. LDFE Blind acquisition 
White filter JEM-W 

         FSE-T/2 Godard 
2. SOFT DFE Soft DFE acquisition 
         FSE-T/2 Passband LMS 

Decision feedback JEM-4 
3. DD DFE Classical LMS 

 
   The described activation is controlled by the 
performance index monitor. Using in advance defined 
checkpoints, it makes switching of the structure and 
algorithms.  As a measure of performance index of the 
running equalizer we use the estimated MSE  of its 
output, denoted here as M. The MSE estimation is not 
the problem for the classical (trained) equalizers because 
they have an ideal reference or very good estimates of 
data symbols. On the other hand, blind equalizers have 
no reference for error counting what implies a new 
design of  MSE estimator that should be suited to our 
T/2 soft DFE .  
   The basic recursive formula for MSE estimation is 
given by 
 



M (k) = λM (k-1) + (1-λ)|e(k)|2           (6) 
 
where e (k) is the current value of error and  λ is a so 
called “forgetting factor” that is slightly less than one, 
e.g., λ=0.99. In the blind phase of acquisition the  error 
counting is refereed to the Godard factor R2 [2], which 
represents the statistical properties of transmitting 
signal. In that specific case formula (6) becomes     
 
MG (k) = MG (k-1) + (1-λ) (√ |y(k)|2- √R2)2         (7) 
 
where y(k) is the output of FSE/T2.  
   When the estimated MSE becomes less than an in 
advance defined threshold  MSESW-1 and the LDFE 
structure switches to the soft DFE, the MSE counting 
proceeds with a changed correction term. Now the soft 
DFE structure,  Fig. 2, starts to generate  estimated 
values of symbols d̂ (k) (true output) so the error signal 
becomes decision directed type,  e(k) = ( d̂ (k)-v(k)).  
The formula (6) assumes now the final form   
 
MDD(k) = λ MDD(k-1) + (1-λ) (| d̂ (k)-v(k)|2)       (8) 
     
Using MSE estimates given by (7) and (8) the , 
performance index monitor makes control of T/2 soft 
DFE according to the following rule: 
 
MG(k0) ≥ MSW-1 ,  blind phase for k>k0 , or       (9) 
MDD(k0) < MSW-1 , soft decision or tracking mode k>k0 
where  MG(k0-1) =  MDD(k0-1) for any k0.  
 
   Simulations carried out for different signal 
constellation sand voice-band channels have shown that 
the threshold MSESW-1 must be chosen carefully to 
guarantee reliable switching of structure from LDFE to 
soft DFE and reverse. Especially, the performance index 
monitor must not allow the possibility of uncontrolled 
switching between two structures caused by a poor 
estimate of MSE in the blind phase. Generally, if the 
threshold level is higher than desired, the equalizer can 
switch to soft DFE before an eye diagram is opened 
enough and in that case the activation fails. On the other 
hand, if the threshold level is lower than desired the 
equalizer can stay permanently in a blind mode because 
the estimated MSE in the blind phase of acquisition, 
given by (7), has a minimum value for different signal 
constellations.        
   The T/2 soft DFE has to pass two thresholds during its 
activation, the first one MSESW-1 and the second  
MSESW-2, where MSESW-2 is less than MSESW-1. As 
described above, the threshold MSESW-2 controls 
swapping of JEM-4 by a classical LMS algorithm when 

the equalizer enters the tracking mode. The carried out 
simulations have shown that choice of MSESW-2 is not as 
critical as that of MSESW-1 because the equalizer can 
permanently stay in soft DFE phase. 
 
 
5  Computer simulations 
T/2 soft DFE is tested with a software simulator 
designed for voice-band modem ITU-T V.32 [7]. This 
simulator is modified by changing classical trained 
equalizer with different solutions of blind equalizers. 
T/2 soft DFE simulations are carried out for QPSK, 
QAM16 and QAM32 signal constellations. The applied 
non-minimum phase voice-band channels are selected 
according to EIA methodology [7]. The attenuation and 
group delay characteristics which are used to synthesize 
channels with different levels of linear distortions are 
depicted in Fig 3.:  
-channel 2 (EIA-B2) with modest attenuation and group 
delay, 
-channel 3 (EIA-C2) with severe attenuation, 
-channel 4 (EIA-B4) with severe group delay 
distortions.   
The most important parameters of designed blind DFE 
are: 
-T/2 FSE is 21 lengths in T intervals, 
- feedback part is 6 lengths in T intervals, 
- referent coefficient Cref (k) = [Re, Im], is  
Cref(20)=[1.7,0.0],  
- R2  statistics parameter for QPSK, QAM16 and 
QAM32 has the following values R2,QPSK=10.0, 
R2,QAM16=13.2 and R2,QAM32=13.2, [2]. 
The carried out simulations are grouped into two basic 
tests: 
-TEST 1, where the optimal values of BETA are fixed, 
-TEST 2, comparative tests for T/2 hard DFE and T/2 
soft DFE. The T/2 hard DFE is  FS variant of the 
original  solution of blind DFE presented in [4]. 
   TEST 1: Taking into account a large number of 
simulations we  checked an assumption about the 
existence of optimal values of parameter BETA in  
JEM-4 and JEM-W algorithms for different signal 
constellations and severity of channel degradation. This 
optimality is measured by steady state MSE  while the 
BETA was taking values from range the {0.01, 0.20}. 
The simulations carried out on channel 2  have shown 
that the performances of T/2 soft DFE are practically 
independent of BETA. This result is expected because of 
a low level of ISI, so that the white filtering is not 
relevant in this case.  On the other hand, the results with 
channels 3 and 4 have clearly indicated that the 
influence of BETA is critical. The optimal values of 
BETA for different signal constellations are 



BETAQPSK≈0.05, BETAQAM16≈0.08 and 
BETAQAM32≈0.08. The equal values of BETAOPT for 
QAM16 and QAM32 are caused  by  the  same  R2   
statistics  of  these signals, i.e., R2,QAM32=R2,QAM16. At the 
same time BETAOPT is 0.05  for signal QPSK which has 
R2,QPSK=10.0. The steady state MSE for different values 
of BETA for channel 3 are shown in Fig 4a. In the case 
of channel 4, which is selected to represent voice-band 
channels with severe group delay distortions, it is  
shown that the MSE has not a unique minimum. 
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Fig. 3a. Channel attenuation curves: B-modest, C-severe  

 
 

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500

G
ro

up
 d

el
ay

 (m
s)

f (Hz)

'CURVE_2.DAT'
'CURVE_4.DAT'

 
Fig. 3b. Channel group delay curves: 2-modest, 4-severe 
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Fig. 4a. MSE versus BETA for channel 3 

BT323=QAM32, BT963=QAM16, BT483=QPSK 
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Fig. 4b. MSE versus BETA for channel 4 

BT324=QAM32, BT964=QAM16, BT484=QPSK 
 
   One can see in the Fig 4b. a common region of 
BETAOPT  where the equalizer reaches the minimum 
MSE for all of three signal constellations.  This region 
surrounding BETA≈0.07 also coincides with  BETAopt 
for channel 3. Besides this common region (minimum), 
there are a number of local minimums which are caused 
by non-minimum phase channel. It is reasonable to hope 
that BETAopt which can be fixed for channels with 
severe attenuation (channel 3) will also provide for 
desired parameters setting for all other channels 
(channel 4).  
   All these results of simulations considering rounding 
effects of nonlinear functions on MMSE are preliminary 
and  will be the subject of a future study.  
   TEST2: These comparative simulations are carried out 
for two solutions of decision feedback blind equalizers:  
T/2 hard DFE and T/2 soft DFE. The last is optimized 
with the values of BETAopt  fixed in TEST1.  Fig 5a. 
presents the convergence curves for channel 3. The T/2 
soft DFE has a lower MSE than T/2 hard DFE for about 
1.8 dB and also a little better speed of convergence. This 
advantage of T/2 soft DFE over hard one becomes  
higher for channel 4, Fig 5b.,c.  
The curves of convergence for QPSK have revealed that 
T/2 hard DFE has reached local minima and has not 
been able to escape from it when DFE was switching to 
the decision directed mode, Fig 5c. On the other hand, 
T/2 soft DFE has softly passed this switching and 
reached the same steady state MSE as QAM32. It is 
important to note that the efficiency of a soft DFE in the 
case of voice-band channels with phase distortions was 
the first time presented in [3]. It was a  suboptimum 
equalizer, known as the estimated feedback, based on 
Bayes estimation theory.   
  
 
6  Conclusion 
This paper presents a new solution of blind soft DFE 
based on the idea of cascading and reversing the places 
of linear transformers, which are components of 



classical DFE, to defeat a difficult start of blind 
equalization. The key transformers, whiting filter and 
feedforward part are designed to support T/2 FS 
equalization. The adjustment of white filter and 
feedback part, during  the  acquisition  mode is  realised  
using  joint  entropy maximisation algorithms, JEM-4 
and JEM-W. These two soft decision algorithms provide 
a "soft" switching from acquisition to tracking mode and 
reverse. This means, they probably smooth the error 
surface and allow the equalizer to easily escape from 
local minima. This efficiency and steady state 
performance superiority of T/2 soft DFE in comparison  
with hard decision solution is illustrated by a number 
results for different signal constellations.   
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Fig. 5a. Channel 3, QAM32: MSE for T/2 soft DFE 

 and LDFE 
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Fig. 5b. Channel 4, QAM32: MSE for T/2 soft DFE 

 and LDFE 
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Fig. 5c. Channel 4, QPSK: MSE for T/2 soft DFE 

 and LDFE 
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