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Abstract – This paper considers the blind decision feedback 

equalizer for quadrature amplitude modulation (QAM) systems 
and proposes the optimization method of parametric stochastic 
gradient algorithms particularly derived for its entropy-based 
feedback filter. The optimization method is based on the fact that 
the “slope” of applied parametric complex-valued nonlinearity 
can be adjusted to the unknown probability distribution of an 
input intersymbol interference to respond with a maximum 
entropy output. The parametric optimization is achieved for 16-, 
32- and 64-QAM signals.   

Keywords – Blind equalization, decision feedback equalizer, 
joint entropy criterion, soft feedback filter.  

I. INTRODUCTION 

The major drawback of the blind decision feedback 
equalization is the error propagation phenomenon emerging at 
the beginning of the detection process. To eliminate this 
difficulty, the blind decision feedback equalizer addressed in 
this paper (Soft-DFE) combines both the structure 
decomposition method proposed by Labat et al. [1] and the 
“soft” feedback filter (SFBF) [2], [3] based on the blind 
deconvolution theory approach by Bell-Sejnowski [4]. 
According to this theory, the SFBF acts as a single neuron 
unit which reduces the post cursor intersymbol interference 
(ISI) by the joint entropy maximization (JEM) criterion. 

This paper addresses the optimization method for the 
parametric stochastic gradient algorithms which adjust 
SFBF’s coefficients during the initial phase of Soft-DFE 
convergence. For that purpose the neuron slope is varied by 
free parameters to respond with a maximum entropy signal 
with a motivation to implement the computationally efficient 
solution of blind DFE for 16-, 32- and 64-QAM signals. The 
alternative to this parametric neuron approach is the one 
which is based on the adaptive mapping functions which 
generally leads to solutions burden with a higher degree of 
complexity [5]. 

II. SOFT FEEDBACK FILTER 

The basic model of SFBF is presented in Fig. 1. The data 
na  applied to a linear time-invariant noiseless channel is a 

sequence of zero-mean i.i.d. variables with a sub-Gaussian 
distribution and the neuron input T

n n n nz x= +b r  is a sum of  
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Fig. 1. DFE with a neuron unit: the basic model of SFBF 

channel output nx  and a weighted sum of neuron outputs 
where the coefficients jb  and outputs n jr − , 1,...,j N= , are  

elements of vector 1[ ,..., ]Tn Nb b=b  and 1[ ,..., ]Tn Nr r=r , 
respectively. According to the Bell-Sejnowski theory, the 
neuron ( )g z  is a monotone increasing sigmoidal function the 
form of which approximates the expected cumulative 
distribution of inputs according to the relation 

( ) ( )
z

g z p u du
−∞

≈ ∫  where ( )p z  is the probability density 

function (pdf) of input z . Unfortunately, since the pdf of ISI, 
and hence of z , is generally unknown and also there is a lack 
of appropriate (sigmoidal) nonlinearities, it is practical to use 
a parametric nonlinearity ( , )g z β  where the parameter β  
varies the neurons slope in a way to be as close as possible to 
the probability distribution of ISI.  

For the complex-valued SFBF model described by the 

nonlinearity ( )2( , ) 1n n ng z z zβ β= + , the stochastic gradient 

(ascent) algorithm has been derived in [3] 

       ( )2 *
1, , 1n j n j n n n jb b z z rµ β+ −= − − , 1,...,j N=        (1) 

which optimizes the JEM criterion ( ) ln n
E

n

r
J E

z
 ∂ =  

∂  
b  

under the hypothesis of correctly detected symbols 
n j n jr a− −= , 0,...,j N= , where µ  is a step size and β  is  a 

real parameter. According to this approach, the SFBF 
manipulates the pdf of outputs toward its uniformity using 
only on-line data. 

III. SOFT-DFE: STRUCTURE AND ALGORITHMS 

The basic model of SFBF is heuristically modified to be 
implemented in Soft-DFE scheme optimizing both the 
structure and the criterion through three operation modes: 
blind acquisition, soft transition and tracking. During the blind 
acquisition, the SFBF is transformed into a linear all-pole 
filter (whitener) and placed at the front end of the Soft-DFE 
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(a) (b) 
Fig. 2. Soft-DFE scheme in (a) blind acquisition and  

(b) soft transition mode 

to  perform  non-flat  channel spectrum equalization, Fig. 2a. 
In this phase, the Soft-DFE operates as a linear T/2 
fractionally-spaced equalizer (T is the symbol interval) 
including four signal processing circuits ordered in cascade 
with increasing complexity - gain control (G), whitener (W), 
fractionally-spaced equalizer (T) and phase-locked loop (P) - 
where W and T perform the most critical tasks.   

The whitener W, which includes two purely recursive filters 
with coefficient vectors ,1 ,[ ,..., ]Ti i i Nb b=b , i =1,2, is adjusted 
by the JEM-W recursion 

    ( )2 *
, 1, , , , , ,(1 ) 1i n j W i n j W i n W i n i n jb b u u uγ µ β+ −= − − −     (2) 

where Wµ  is step-size, Wβ  is slope factor and Wγ  is the 
leakage factor which determines the coefficients leakage rate. 
The leakage term in JEM-W is applied to restrict an 
unconstrained growth of whitener’s coefficients. Let us 
remind that the coefficient leakage method is the standard 
practice in fractionally-spaced equalization [6].  

At the same time and independently of W, the T, which is 
defined by coefficient vectors ,0 , 1[ ,..., ]Ti i i Lc c −=c , 
compensates for a phase distortion introduced by a channel-
whitener combination using the leakage variant of Godard’s 
constant modulus algorithm (CMA) [7] given by 

           ( )2 *
1, ,(1 )n k G n k G n n n kc c y y R uγ µ+ −= − − −           (3) 

where Gm  is step size, Gγ  is leakage factor and R  is signal 
dependent statistical constant. According to the previous 
experience, the leakage terms in (2) and (3) for 16- and 32-
QAM signals are not necessary so that the Wγ  and Gγ  can be 
set to zero, but not for 64-QAM.  

In the next soft transition mode, one of two whiteners - 
selected according to energy criterion - transforms itself into 
the SFBF keeping on JEM-D adaptation by algorithm 

  ( )2 *
1, , ˆ1n j n j D n D n n jb b z z aµ β+ −= − −     (4) 

which is determined by its own { , }D Dµ β  parameters, while 
the T switches adaptation from CMA to decision-directed 
LMS (DD-LMS), Fig 2b. Finally, for the signal eye opened 
enough, the SFBF switches itself into the hard-decision 
feedback equalizer driven by the DD-LMS (tracking mode). 
The described process of Soft-DFE transformation is 

controlled by its own mean square error (MSE) monitor which 
performs the switching of operation modes using MSE-TL 
thresholds: MSE-TL1 from blind to soft transition and MSE-
TL2 from soft transition to tracking mode. 

IV. JEM ALGORITHM: PARAMETER SELECTION 

The optimization of JEM algorithms is achieved by { , }γ β  
parameters according to the specifics of Soft-DFE operation 
through the blind and soft transition modes. The Soft-DFE 
during the blind phase is seen as a linear equalizer where T 
maximizes the kurtosis statistics of symbol estimates ny  [8] 
and W, (which operates independently of T), performs the 
conditioning of T input correlation matrix. In other words, for 
the optimal selection of { , }W Wγ β  in (2), the correlation 
matrix of T can be conditioned to achieve the maximal 
kurtosis of outputs ny . This setting of Soft-DFE indicates that 
the kurtosis of ny  can be used as a suitable measure of JEM-
W optimality. Thus, the kurtosis versus { , }W Wγ β  is 
calculated at the end of blind mode by using the formula [2] 
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The convergence of the Soft-DFE in soft transition phase is 
determined by DD-LMS and JEM-D algorithms adjusting, 
respectively, T and SFBF filters. According to this 
arrangement, the SFBF has a task to eliminate the massive 
packets of errors for an optimally selected slope Dβ . The 
efficiency of SFBF is measured in two ways depending on the 
signal complexity. For the middle dense 16- and 32-QAM 
constellations, it is practical to measure the symbol error rate 
(SER) versus Dβ . On the other hand, for the higher dense 64-
QAM, it is more convenient to measure the convergence time 
between thresholds MSE-TL1 and MSE-TL2 versus Dβ .  

A. Optimal { , }W Db b  for 16- and 32-QAM 

In the following text the experimental data obtained via 
simulations are analyzed to select the optimal values of 
{ , , }W W Dg b b  parameters for 16-, 32- and 64-QAM signals. 

Fig. 3 presents the kurtosis of symbols ny  originating from 
a 16-QAM signal which is measured at the end of blind mode 
for different values of Wβ  and multipath channels Mp (see 
Fig. 7). The corresponding curves for 32-QAM closely follow 
the curves for 16-QAM and are not presented here. Using 
these kurtosis curves as well as the corresponding MSE 
convergence characteristics of Soft-DFE, the optimal vales of 

Wβ  are decided in the relatively wide range of values 
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        Fig. 3. Kurtosis versus Wβ  

 

 
          Fig. 4. Symbol error rate versus Dβ for 16- and 32-QAM 

{0.8,2,0} and {0.8,1.4} for 16-QAM and 32-QAM, 
respectively. For minimal values of Wβ  the algorithm JEM-W 
loses ability to cope with deep spectral nulls of the received 
signal, and for maximal ones the switching robustness of Soft-
DFE to transform itself from blind to tracking operation mode 
is being degraded. The last is typically characterized by the 
increased number of equalization failures due to error 
propagation.  

The SER curves versus Dβ  shown in Fig. 4 indicate the 
ability of JEM-D to minimize SER caused by error 
propagation. Independently of channels, these curves present 
minima for the same optimal value of Dβ  that can be 
estimated as ,16 12Dβ =  and ,32 10Dβ =  for 16- and 32-QAM 

signals, respectively. Besides, these optimal values of Dβ  are 
independent of W, which can be seen as a part of channel.  

B. Optimal { , , }W W Dg b b  for 64-QAM 

The selection of JEM parameters for 64-QAM signal is a 
little more complex than for 16- and 32-QAM because it 
includes three parameters { , , }W W Dg b b . However, this 
complexity can be relaxed taking into consideration the fact 
that parameters { , }W Wg b  and Db  can be selected 
independently of each other in a similar manner as it is done 
in the case of 16- and 32-QAM signals. Fig. 5 presents 
kurtosis curves versus Wβ  obtained for a suitably selected set 

of leakage factors 14 13 12{0.0,2 ,2 ,2 }− − −  for the worst case 
channel Mp-E. As can be seen, by increasing leakage from 

0Wγ =  (corresponding to the basic variant of JEM-W) to 
122Wγ
−= , the kurtosis statistics has been improved in the 

sense that the strong saturation characterizing the curve 
0Wγ =  disappears by increasing leakage so that that the curve 
122γ −=  becomes similar to the curves obtained for 16- and 

32-QAM signals (see Fig. 3). It has been the motivation to 
estimate that the maximal kurtosis 0.6625Kur =  for curve 

122Wγ
−=  is achieved for 1Wβ = , and then to decide other 

{ , }W Wg b  pairs which also optimize JEM-W to affect the 
same kurtosis value. Thus, in the case of the leakage variant of 
JEM-W, for each given leakage factor Wγ  the corresponding 
maximal slope Wβ  can be selected which guarantees a 
successful equalization. According to this method the 
following { , }W Wg b  pairs are obtained: {0.,0.1} , 14{2 ,0.4}− , 

13{2 ,0.6}− , 12{2 ,1.0}− . It should be stressed that in the case 
of 64-QAM only the last two pairs are of practical interest 
because they force an approximately linear kurtosis increase 
which ensures a good compromise between effective 
convergence speed and successful equalization.  

To select the slope Db  for JEM-D, the MSE transition time 
(MSE-TT) from MSE-TL1 to MSE-TL2 is observed for the 
motivating set of Db  in the range from 0.5 to 4.0. Fig. 6a 
presents the MSE-TT in symbol intervals versus Db  for Mp-
channels. The smooth hyperbolic-like MSE-TT curves show 
that their unique minima converge into a relatively narrow 
range of Dβ  from 1.75 to 2.25 indicating that the positions of 
their minima are practically independent of channel. It can be 
also shown that the optimal value of Dβ  is practically 
independent of W. 

Based on the above simulation results, it is shown that the 
optimality of JEM-W and JEM-D can be achieved by their 
corresponding parameters. In contrast to the optimal values of 

Dβ , the above maximal values of Wβ  are additionally fitted 
to achieve the best compromise between convergence rate and 
equalization successfulness. Hence, the optimal pairs of 
parameters are decided approximately as follows 
{ ,16 1.3Wb = , ,16 12Dβ = }, { ,32 1.0Wb = , ,32 10Dβ = } and 

{ ,64 0.5Wb = (for 13
Wγ
− ), ,64 2Dβ = }. 
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        Fig. 5. Kurtosis versus Wβ  for 64-QAM 

 
        Fig. 6. MSE-TT versus Dβ  for 64-QAM , 132Wγ

−=  

 
      Fig. 7. Attenuation of Mp-(A,B,C,D,E) channels.  

V. SYSTEM SIMULATOR 

The simulations are carried out for the time-invariant 
frequency-selective fading channels. Fig. 7 shows the 
attenuation characteristics of a three-ray channel model 
involved into the transmitter filter of system. The length of 
equalizer is L=22 and N=6 for (16,32)-QAM, and L=25 and 
N=5 for 64-QAM in its T and W parts, respectively. The 
initial vectors of T are with zero components except the 
centred (reference) ones 1, 2, 1r rc c= = . For (16, 32)-QAM, 
the Soft-DFE switches from blind to soft transition mode at 
the threshold level MSE-TL1=1.5 dB and then the soft 
transition continues during the next 2000 T intervals, and for 

64-QAM the threshold levels are selected to be MSE-TL1=7.9 
dB and M-TL2=-2.2 dB. The simulations are carried out 
under a signal-to-noise ratio of 25 and 30 dB for (16, 32)-
QAM and 64-QAM, respectively.   

VI. CONCLUSIONS 

In this paper the optimization method for the parametric 
recursive part of the blind Soft-DFE is presented. It is proved 
via simulation that the parameters of the selected complex-
valued nonlinearity can be optimally adjusted for the given 
signal in the system with a large scale of severe ISI channels. 
The efficiency of the presented method is verified with 16-, 
32- and 64-QAM signals  
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