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Complex-Valued Maximum Joint Entropy Algorithm 
for Blind Decision Feedback Equalizer 

Vladimir R. Krstić1, Zoran Petrović2 

 
Abstract - This paper proposes the complex domain solution of 

the blind decision feedback equalizer (DFE) based on joint 
entropy maximization (JEM) criterion. For the feedback filter of 
DFE, a new complex activation function is defined and then the 
stochastic gradient algorithm of the JEM type is derived. The 
fact that the JEM cost is a real function of complex quantities 
suggests the method associated to a least man-square criterion.  
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I. INTRODUCTION 

The real to complex domain extension is a problem that, in 
general, characterizes the usage of neural networks [1]. The 
most of real-valued nonlinearities, which have been 
commonly used as information-theoretic objective functions 
(activation functions), become unusable in the complex 
domain due to difficulties following their extension into the 
complex domain. In fact, the conflict between the 
boundedness and the analyticity of complex nonlinearities 
causes a lack of appropriate complex activation functions. 

In this paper we consider and propose the complex domain 
solution of the blind decision feedback equalizer (DFE) that 
was derived in [2] for real-valued input data by using the 
information-maximization theoretic approach [3]. The basic 
set of suitable properties of a complex activation function, 
which is defined in the context of the multilayer feedforward 
neural networks (multilayer perceptron) [4]-[6], is modified in 
order to support the DFE adaptation based on the joint entropy 
maximization (JEM) criterion. Hence, for a new complex 
activation function, the complex-valued stochastic gradient 
algorithm of the JEM type (CJEM) is derived following the 
method applied to the multilayer perceptron in [4] and [5]. 

II. PROBLEM DEFINITION 

In [2], the feedback part of the DFE is considered as a 
sigmoid unit in the system with a real channel and binary 
symbol source { }na  that is independent, identically 
distributed (i.i.d.) and zero mean, Fig 1. In the this unit, which 
is denoted as a soft feedback filter (SFBF), the output of the 
linear combiner, nz , is the sum of channel output nx  and 
weighted sum of previous outputs n jr − , 1,...,j N= , feeding 
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Fig. 1. Model of transmission system with soft feedback filter  

 
the delay line of the feedback filter defined by coefficients 
{ }jb . The real-valued activation function ( )g ⋅  is both 
memoryless and strictly monotonically increasing nonlinearity 
that performs the input-output mapping in order to improve a 
decision region of the DFE. In the vector form, the 
relationship between the new input and output is expressed by 

n n=z Bx            (1) 

where the input and output vectors and the filter coefficient 
matrix B  are defined as follows 

( )1, ,..., T
n n n n Nx r r− −=x , ( )1, ,..., T

n n n n Nz r r− −=z         (2) 
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Assuming that the previous decisions are correct and the 
distribution function of the received signal ( )f xx  is a constant 
with respect to coefficients { }jb  the following cost function is 
derived 
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The above cost function is a real scalar function of the 

coefficients { }jb . Its stochastic optimization, in maximizing 
information, also performs redundancy reduction (i.e., 
intersymbol interference) [3]. Based on the EMJ  cost function 
the CJEM algorithm will be derived for which the inputs, 
coefficients, activation function and outputs are complex-
valued. 
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III. COMPLEX ACTIVATION FUNCTION 

Let us define the suitable properties of a complex activation 
function ( ) ( , ) ( , )R I R I R Ig z u z z iv z z r ir= + = + , where u  and 

v  are its real and imaginary parts and R Iz z iz= + , 1i = − ; 
the symbol interval index n  has been dropped for 
convenience of notation. With regard to our intention to find 
the stochastic gradient of a real cost function EMJ  with 
respect to complex coefficients, the condition of analyticity, 
which is mentioned in the introduction, is not so tight. In fact, 
a complex activation function ( )g z  need not necessarily be 
analytic but, it mast have continuous partial derivatives [1], 
[6]; consequently, it is essential that EMJ  be real. Following 
this idea, we have assumed that our function  ( )g z  possesses 
the properties that can be summarized as follows: 
P1. ( )g z  is nonlinear in Rz  and Iz .   
P2. For all z  in a bounded domain D , a suitable complex 
activation function ( )g z  must have no singularities 
(especially no poles) and it must be bounded. This property is, 
in fact, the bounded-input bounded-output (BIBO) condition 
for a complex activation function. In other words, the system 
using the activation function ( )g z  must be stable in the BIBO 
sense. 
P3. The functions Rr  and Ir  are continuously differentiable 

so that the inverses 
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P4. The partial derivatives of ( )g z  obey the condition 
2 2 2 2

2 2
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∂ ∂ ∂ ∂
≠
∂ ∂ ∂ ∂∂ ∂

. If this condition is not satisfied 

no learning state is possible for nonzero both input 
( ),n R Iz z z=  and ( ),n R Iδ δ δ= . The proof of this proposition 

is similar with one given in [5] for multilayer perceptron. 

IV. COMPLEX JEM ALGORITHM 

A. The stochastic gradient of the cost function EMJ  

The EMJ  is a function of the absolute value of the complex 
numbers as well as the cost function LJ  of  the complex LMS 
[7] and generalized LMS [1,Ch.17] algorithms. The essential 
characteristic associating these functions is that they are real 
scalar functions of the complex coefficients. Based on that 
fact we can apply the gradient of the generalized LMS 

algorithm, which is derived for a multilayer perceptron, to 
find the gradient of JEM. 

Let us recall the stochastic gradient of the back-propagation 
algorithm for the k th neuron in layer 1l M= −  of multilayer 
perceptron. For the input-output relation of neuron that is 
characterized by the nonlinear equation ( )r g z u iv= = + , 

1
R I j j

j

z z iz w x
=

= + =∑  the gradient with respect to complex 

coefficients { }jw  is defined as follows: 
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By means of the above gradient it is simple to derive the 

corresponding gradient of EMJ . To do that, we have to: i) 
define the input-output relation of SFBF and ii) observe the 
variable dependencies in the cost function EMJ  with the aim 
to find the corresponding partial gradients using the chain rule 
of calculus. Following this procedure, both the input and the 
output of  SFBF at the symbol interval n  are given by 

 
, ,( )n R n I ng z r ir= + , 
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Consequently, the first-order partial derivatives with respect 
to the real and imaginary parts of the j th coefficient jb  of 
the feedback filter are given by 
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Using the chain rule of calculus the corresponding second-
order partial derivatives are 
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Substituting the Eqs. (9) and (10) in Eqs. (6) and (7) the 
instantaneous value of gradient of EMJ  becomes 
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B. The stochastic gradient algorithm of the JEM type 

Let us derive the gradient of EMJ  with respect to the 

coefficients { }jb  for the complex activation function defined 

by  
 

2( ) ( ) (1 )g z r z z zβ= = +                     (12) 
 

where β  is a real positive constant. In terms of real and 
imaginary parts of ( )r z  the above function is 
 

( ) ( )2 2( ) 1 1R Ir z z z iz zβ β= + + + .              (13) 

 
Note that the parameter β  in Eq. (13) modifies both the real 
and the imaginary parts in the same manner. Thus, by means 
of β  we can change the smoothness of the surface (i.e., 
input-output mapping) that is defined by the magnitude of the 
complex function ( )g z .  
   Now we can prove the properties P1-P4 of the ( )g z . It is 
obviously the function is nonlinear in Rz  and Iz  (P1) and 
bounded in the BIBO sense (P2). The normalized second-
order partial derivatives in Eq. (11), which are given by 
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are bounded. It is clear that they must be bounded since 
coefficients updating is in quantities proportional to the 
normalized partial derivatives (P3). Finally, second-order 
partial derivatives of ( )g z  are given by 
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Thus, 2 236 4R I R Iz z z zβ β≠  and P4 is satisfied.    

The stochastic gradient of EMJ  in Eq. (11) is function of 
the normalized second-order partial derivatives that are given 
by relations in Eq. (14) and that can be approximated with 
their Taylor series expansions. Using the approximation 

method 21 1 ... 1
1

x x x
x
= − + − ≈ −

+
 and some simple algebra 

the gradient given by Eq. (11) becomes 
  

22 2 2 2 3 *8 8 4 12
jb EM R R R I R n jJ z z z z z z rβ β β β −

⎡ ⎤∇ = − − −⎢ ⎥⎣ ⎦
 

22 2 2 2 3 *8 8 4 12I I I R I n ji z z z z z z rβ β β β −
⎡ ⎤+ − − −⎢ ⎥⎣ ⎦

, 

                                                     1,...,j N= . 
  (16) 

 
The above gradient can be further simplified dropping the 
terms 2 24 R Iz zβ , 2 312 Rzβ , 2 24 I Rz zβ  and 2 312 Izβ . This 
approximation is motivated by the aim to provide the low 
computation complexity CJEM algorithm  comparable with 
algorithms of the Bussgang type. Thus, the gradient of EMJ  is 
given by 
 

( )2 *8 1
jb EM n jJ z z rβ β −

⎡ ⎤∇ = −⎢ ⎥⎣ ⎦
, 1,...,j N= .      (17) 

 
  and the corresponding CJEM stochastic gradient algorithm is 
 

, 1 , jj n j n b EMb b Jμ+ = + ∇ , 

( )2 *
, 1 , 1j n j n S n n n jb b z z rμ β+ −= + − , 1,...,j N= ,     (18) 

 
where 8Sμ μβ=  is a step size. It should be noted that the 
smoothing parameter β  could be used as a tool to vary the 
convergence characteristics of the JEM algorithm. In other 
words, varying the parameter β  it is possible to optimize the 
input-output mapping in a sense of maximum joint entropy. 

V. SIMULATION RESULTS 

In this section we present the convergence characteristics of 
the “self-adaptive” DFE (Soft-DFE) that combines both the 
adaptive structure and the different adaptation criteria [8]. In 
this scheme, the CJEM algorithm provides a soft transition 
from blind to tracking operation mode. 

The self-adaptive Soft-DFE carries out a difficult task of 
blind activation as a sequence of several subtasks progressing 
from easier to more complex, as illustrated in Fig 2. In blind  
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Fig. 2. The structure of Soft-DFE:  (a) linear T/2 fractionally-spaced 

equalizer (FSE) in blind acquisition mode represented by two 
symbol-rate equalizers, (b) decision-directed DFE with modified 

CJEM soft feedback filter in transition mode   

acquisition mode, the Soft-DFE is the linear equalizer 
consisting of: (i) the SFBF-FSE cascade where the SFBF is a 
pure recursive whitener that compensates, in predictive 
manner, the amplitude distortion of perhaps nonminimum 
phase channel and (ii) the FSE that compensates the phase 
distortion of channel-whitener combination. In tracking mode, 
the Soft-DFE is a classical DFE performing MMSE decision-
directed LMS equalization. Besides, the Soft-DFE is 
characterized by the soft transition mode that takes place 
immediately after structure switching, Fig 2b. In this phase of 
operation, the objective of the SFBF is to mitigate the error 
propagation effects that emerge at the moment of both the 
structure and criteria switching.  

The length of Soft-DFE is 22T  and 6T  in its FSE and 
SFBF parts, respectively, where T  denotes symbol interval. 
The initial values of coefficients are all zero except for two 
centered reference taps in FSE. The channel impulse response, 
comprising the pulse-shaping filter at transmitter and the 
multipath propagation channel, is given by 

1 1 1( ) ( ) ( ) ( ) ( )h t e t W t a e t W tτ τ= + − −  

2 2 2( ) ( )a e t W tτ τ+ − −   (19) 

where ( )e t  is the basic pulse and ( )W t  is a rectangular 
window spanning { }16 ,16T T− . The presented simulation 
results are carried out through use a channel with the 
following propagation parameters: 1 0.9a = , 2 0.4a = , 

1 3 / 4Tτ =  and 2 2Tτ = . 
The convergence characteristics of the Soft-DFE are 

evaluated running Monte Carlo tests with 1000 independent 
runs. The results of testing include the MSE convergence 
characteristics presented in Fig. 3 where threshold levels 

1 1.5TLM dB=  and 2 8TLM dB= −  define the soft transition 
mode. The threshold level 1TLM  is selected to be a high 
enough so that the constellation-eye of 16QAM signal is 
practically closed. The presented results should highlight the 
effect of the smoothing parameter  β , which is selected in the 
range { }1,2, 4,6,8,10β = , on the Soft-DFE convergence. For 
 

 
 
Fig. 3. MSE convergence of Soft-DFE for 16QAM and SNR=25 dB: 

CJEM for different values of smoothing parameter 
{ }1,2, 4,6,8,10β =  and trained Soft-DFE 

the purpose of comparison, the Soft-DFE with the CJEM is 
compared with the Soft-DFE that, after blind acquisition, 
switches into the trained mode based on the desired symbols 

na  and LMS algorithm. This scheme is denoted as the 
“trained” Soft-DFE. Obviously, by increasing β , the CJEM 
algorithm provides a promising MSE convergence. It can be 
estimated that Soft-DFE strikes the best MSE convergence for 
β  in range { }6,10 . In the contrary, for smaller values of β , 
CJEM algorithm loses power so that the convergence 
characteristics become unacceptable.  

The presented results can be summarized as follows: (i) the 
proposed complex nonlinearity has a property to maximize 
joint entropy, (ii) the simulation results indicate that the 
performance of CJEM algorithm can be optimized, for given 
signal constellation, by means of the smoothing parameter.  
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