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Abstract — The addressed blind decision feedback equalizer 

(DFE) reverses the classical order of its feed-forward and 
feedback filters at the beginning of adaptation to achieve the 
best equalization of the minimum and maximum phase 
components of a channel transfer function. Although very 
effective, this blind equalization approach deals with the 
feedback filter mismatch at the time of its transformation from 
the front-end all-pole whitener of the received signal to the 
decision-directed feedback equalizer placed after the feed-
forward filter. To eliminate this weakness, the adaptive 
neuron slope is introduced instead of the fixed one into the 
stochastic gradient whitening algorithm based on the joint 
entropy maximization cost. The performance of the innovated 
algorithm is verified by simulating m-QAM (quadrature 
amplitude modulation) signals transmission over multipath 
channels. The algorithm with the adaptive neuron slope 
achieves a better whitening of the received signal spectrum, 
and, hence, increases the equalization successfulness. 

Keywords — Blind decision feedback equalization, joint 
entropy maximization cost, adaptive neuron slope. 

I. INTRODUCTION 

channel equalizer is the adaptive filter devised to  
compensate for the intersymbol interference (ISI) 

effects at the output of a non-ideal channel. It adjusts its 
own coefficients according to the given optimization rule to 
estimate the unknown channel inverse transfer function. 
The classical equalizers estimate a channel with the help of 
the training preamble known at the receiver side while the 
unsupervised (blind) equalizers perform the same task 
relying on the available received signal and the knowledge 
of few signal statistical features. Making the system free 
from a preamble, a blind equalizer increases an effective 
system throughput and facilitates its operation in an 
environment where it is not practical or possible to use a 
preamble [1].  

A decision feedback equalizer (DFE) combines a linear 
feed-forward (FFF) filter and a feedback (FBF) filter 

including the decision device. In comparison with the 
corresponding linear equalizer (LE), the DFE equalizer 
eliminates the post-cursor ISI with a smaller number of 
coefficients and without noise enhancement owing to the 
recursive nature of its non-linear FBF filter. The superiority 
of the DFE is evidenced for a wide range of channel transfer 
characteristics including channels with deep spectral nulls 
[2] and channels facing long delay spread [3]. 
Unfortunately, this advantage can be severely degraded by 
erroneously detected symbols propagating through the FBF 
equalizer [2]. To eliminate the error propagation effects the 
classical DFE equalizers periodically readjust adaptive 
parameters by means of a preamble while the blind 
equalizers rely on the resourceful cost criteria and 
algorithms able to eliminate the error propagation certainly 
emerging at the early beginning of their adaptation process. 

To escape the error propagation effects, Labat et al. [4] 
designed the self-optimized DFE (SO-DFE) scheme 
optimizing both the structure and the adaptation criterion 
according to the equalizer convergence state. This scheme 
is based on the theory that the minimum mean square error 
(MMSE) infinitely long LE and DFE equalizers share the 
same components in the frequency domain which can be 
factored into two equalizers: the all-pole recursive 
amplitude equalizer and the phase equalizer compensating, 
respectively, for the minimum and maximum phase 
components of a channel transfer function [4], [5]. 

Later in [6] and [7], the SO-DFE scheme was innovated 
by the soft FBF (SFBF) equalizer which was introduced 
instead of the original MMSE-FBF filter to improve the 
estimation of a severe channel spectrum and to mitigate 
effects of a sudden equalizer structure-criterion switching. 
In this innovated SO-DFE scheme, named Soft-DFE, the 
SFBF equalizer exploits the information-theoretic blind 
deconvolution approach by Bell and Sejnowski [8] and, 
specifically, the equivalence between the minimization of 
mutual information between interfering symbols and the 
maximization of the joint Shannon’s entropy of equalizer 
outputs. It was verified by simulations that the Soft-DFE, 
employing the Joint Entropy Maximization (JEM) cost [9], 
attains remarkably better MSE convergence than the 
original SO-DFE in the system transmitting m-QAM 
(quadrature amplitude modulation), m=16,32,64, signals 
over deep-fade channels [6], [7]. 

Although very attractive, it has been noticed in [10] and 
later confirmed in [7] that the practical self-optimized DFE 
scheme, employing finite length filters, presents some 
limitations which are manifested as follows. The Soft-DFE 
deals with the position changing of the SFBF filter during 
the equalizer convergence process (see Fig. 1). In the blind 
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mode the SFBF acts as a front-end all-pole amplitude 
equalizer and, after the equalizer structure-criterion 
switching, as a decision-directed feedback equalizer placed 
after the FFF. In the case of higher-order QAM 
constellations, such as, for example, 64-QAM, the equalizer 
structure-criterion switching is typically followed by 
convergence instability which, depending on the channel 
severity, may lead to an equalization failure. This behavior 
can be caused by several factors: 
 The finite length of the SFBF equalizer results in the 

coefficients mismatch which violates the assumed 
equivalence between infinite MMSE-LE length and 
MMSE-DFE equalizers [10]. 

 An inadequate ability of the selected neuron function of   
the SFBF to match the variance increase of ISI 
probability density function (PDF) of the received signal 
[8]. 

 Too large coefficient magnitudes of filters estimating 
deep channel spectral nulls; the Constant Modulus 
(CMA) [11] and Joint Entropy Maximization (JEM) [6] 
algorithms include “power of three” calculations that 
generate large numbers risking to induce instability or 
overflow difficulties [12]. 

 A sudden structure-criterion switching of the equalizer 
from its blind to soft-transition operation mode. 

 
(a) 

 
(b) 

Fig. 1. Soft-DFE equalizer: (a) blind acquisition and  
(b) soft transition mode. 

To mitigate the above limitations of the Soft-DFE 
scheme, this paper proposes a new variant of the JEM 
whitening algorithm for the SFBF equalizer. Using the 
whitening algorithm with an adaptive neuron slope (JEM-
AS) instead of a fixed one, the SFBF aims to improve ISI 
variance matching during the blind mode and, hence, reduce 
its own coefficients mismatch. 

The rest of the paper is organized as follows: Section II 
describes the Soft-DFE equalizer operation through its three 
operation modes and the entropy-based algorithms of the 
SFBF equalizer model. The proposed JEM whitening 
algorithm with an adaptive slope is considered in Section 
III.  The simulation results presenting the influence of the 
JEM-AS on the equalizer performances are given in Section 
IV. 

II. SOFT-DFE DESCRIPTION 

A. Soft-DFE structure-criterion transformation 

The Soft-DFE equalizer, given through its operation 
modes, is presented in Fig. 1. The received signal ( )x t  is 

sampled at a rate that is twice bigger than the symbol rate 
1/T, and then odd and even samples 

0 ,( / 2) n ix t nT iT x   , 1, 2i  , are alternatively shifted 

to the delay lines of the corresponding filters. The FFF and 
FBF parts of the equalizer include four T-spaced finite 
impulse response filters which are defined, respectively, 

with coefficient vectors , ,1 ,[ ,..., ]Tn i i i Nb bb
 

and 

, ,1 ,[ ,..., ]Tn i i i Lc cc . 

The Soft-DFE operates passing through three operation 
modes: blind acquisition, soft transition and tracking. In the 
blind mode the equalizer effectively acts as a linear T/2 
fractionally spaced equalizer (T/2-FSE) including four 
signal transformers ordered in cascade with increasing 
complexity: gain control (GC), whitener (WT), equalizer 
(TE) and phase rotator (PR), Fig. 1a. Transformers GC and 
WT are coupled in a pair where GC recovers the transmitted 
signal energy and the all-pole whitener WT performs 
channel spectrum equalization. 

The whitener, which is obtained by dropping the decision 
device in the SFBF, is adapted by the stochastic gradient 
algorithm based on the JEM cost. Operating independently 
of the WT, the linear equalizer TE compensates for a phase 
distortion (introduced by a channel+whitener combination) 
using the CMA-2 algorithm [11]. In the next operation 
mode, named the soft transition mode, one out of two 
whiteners, selected according to energy criterion, 
transforms itself into the SFBF equalizer keeping on JEM 
adaptation, while the equalizer TE switches adaptation from 
the CMA to the decision-directed LMS (DD-LMS), Fig 1b. 
Effectively, during the soft transition mode, the Soft-DFE 
is optimized by the combined (MSE+JEM) criterion. 
Finally, the SFBF switches itself into the classical decision 
feedback equalizer performing DD-LMS adaptation 
(tracking mode). The phase rotator PR is active from the 
early beginning of equalization, and it is implemented by 
the classical phase locked loop [1] including some 
modifications [7].  

The process of Soft-DFE adaptation is controlled by the 
MSE monitor that switches both the structure and the 
criterion for a priori selected MSE thresholds (TRs): for 
TL1 from the blind to the soft transition and for TL2 from 
the soft transition to the tracking mode. Besides, the 
threshold TL3 is introduced as a measure of equalization 
successfulness: for MSE  TL3 the equalization is decided 
to be successful and for MSE TL3 unsuccessful. 

 

Fig. 2  Soft feedback filter: basic model. 
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B. SFBF equalizer: background and algorithms 

The SFBF equalizer acts as a neuron-unit maximizing the 
joint Shannon’s entropy (JEM criterion) [9] 

 

( )
( ) ln n

H n
n

g z
J E

z

    
  

b  (1) 

assuming the basic system model presented in Fig. 2: 
 Data symbols { }na  applied to a noiseless linear time 

invariant channel are independent identically distributed 
zero-mean variables with finite variance and sub-
Gaussian distribution. 

 The neuron ( )g   is a nonlinear monotone saturating 

function tending to transform the unknown PDF function 
of the input data into the uniform PDF in the finite range 
of output data symbols ( )n nr g z . 

 The previously detected symbols at the output of the 
SFBF are correct, i.e. n j n jr a  , 1,...,j N . 

Generally, the selection of neuron function in the 
complex domain, suitable for maximizing JEM criterion (1) 
through a stochastic gradient searching of complex-valued 
data, is a specific issue that is not particularly addressed by 
this paper. The interested reader should refer to [13,14] for 
more information. In our case of the SFBF equalizer, the 
neuron is defined by the complex-valued parametric 
function given by 

  2
( , ) 1n n ng z z z    (2) 

where the parameter   represents the neuron’s slope. The 

slope    matches the neuron’s slope to the input PDF 

function in accordance with the maximum entropy 
deconvolution model mapping the input data corrupted by 
ISI into mutually independent symbols [8]. 

The basic stochastic (ascent) gradient JEM algorithm 
[14] has two heuristic variants optimizing the cost (1) 
through two operation modes according to the SFBF filter 
transformation from the decision-directed SFBF equalizer 
to the all-pole recursive whitener (and reverse). The JEM-
D algorithm for the decision-directed SFBF is given by 

 2 *
1, ,

ˆ1n j n j D n D n n jb b z z a     1,2i  , 1,...,j N (3) 

and the JEM-W algorithm for the WT whitener is  

 
 2 *

1, , , , , , ,(1 ) 1n i j n i j W n i W n i n j ib b u u u      
 

(4) 

where ( , )W D   and ( , )W D  are, respectively, the 

corresponding adaptation steps and neuron slopes, and the 
parameter   is the leaky factor. 

It should be noted that the whitening algorithm JEM-W 
in (3) is the variant of the JEM-D algorithm obtained by 
dropping the decision device in SFBF equalizer, i.e., it is a 
result of linearization of the SFBF. Two algorithms share 
the same JEM-type nonlinear gradient term whose 
performances strongly depend on the slope ( , )W D   

selection.  
The JEM-W algorithm in (3) performs all-pole whitening 

of the received signal in the blind mode and the JEM-D in 
(4) continues entropy maximization in the soft transition 
mode assuming that the previous decisions are correct. The 

leaky factor in (3) is an option which can be zero or a small 
positive number. It prevents the overgrowth of the 
whitener’s vector (Euclidian) norm nb  in the case of 

higher-order QAM signal constellations [7]. Acting 

oppositely to the entropic term 
2

,W n iu the coefficient 

leaky term decreases the risk of the equalizer instability at 
the critical time of its structure-criterion switching. As well 
known, the coefficient leaky is a commonly used technique 
in linear regression models with different motivations: to 
regularize their transient behaviour, to improve stability in 
a finite precision implementation and to reduce different 
undesirable effects [15, and references therein]. 

The slope selection is an essential issue of the JEM 
algorithm implementation. The JEM-D algorithm is 
directed by detected symbols ˆna  whose PDF is determined 

by the given signal constellation. This situation simplifies 
the selection of the slope D . In [6] and [7] it is evidenced 

that the optimal value of the slope D  depends only on the 

given signal constellation, and the optimal slope D  can be 

seen as a statistical constant of the given signal and neuron 
function. On the other hand, the selection of the slope W  

is a more complex problem. The JEM-W algorithm is 
directed by the whitener outputs which are not ISI free 
because the whitener deals only with the second-order 
statistics of the received signal.  

Thus, to minimize the mismatch between the WT 
coefficient vector reached during the blind mode and the 
coefficient vector expected by the SFBF at the beginning of 
the soft transition mode, we introduced an adaptive neuron 
slope ,n W  into the JEM-W algorithm supposing that the 

higher quality of  power spectra estimation leads to the 
further mitigation of coefficient mismatch effects. 

III. JEM-W ALGORITHM WITH ADAPTIVE SLOPE  

The JEM-W algorithm with the adaptive neuron slope, 
referred to further as JEM-AS, is given by 

 2 *
1, j ,(1 ) 1n n j W n n n n jb b u u u       , 1,...,j N  (5) 

where the term  

  2
1n n n ne u u   (6) 

represents an a priori prediction error and the whitener 
current output is given by 

 T
n n n nu x b u

 
, 1[ , ..., ]T

n n n Nu u u . (7) 

For simplicity, in above relations subscripts i  and W are 
dropped. 

The JEM-AS algorithm in (5) employs the leaky term 

nb  that here has two roles. First, as mentioned before, the 

coefficient leakage prevents an unconstrained growth of 
whitener coefficients. Second, we use its regularization 
capability to get a measure of the slope adaptation quality. 
Namely, it is used to decide whether to increase or decrease 
the slope n  through its adaptation process. 

The adaptation rule of the slope n  is based on the a 

posteriori prediction errors and a greedy punish/reward 
heuristic [15]. It means that the whitener, at the time t nT  
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but before the next updated input 1nx  , calculates the 

coefficient vector 1
VS
nb  with ( 0  ) and 1nb  without (

0  ) leaky and then the corresponding a posteriori 

outputs ( VS
nu , nu ) and errors ( VS

ne , ne ). Finally, using the 

difference between modules of a posteriori errors the 
whitener decides whether to increase or decrease the slope 

n  according to the rule: if VS
n ne e   the slope decreases 

and if VS
n ne e   the slope increases. The pseudo-code, 

implementing the adaptation rule, is given by the following 
“if-else” relation 
 
 if VS

n ne e   then 

 set 1 max( ,0)n n dm m l     

 else 
 set 1 min( , )n n um m l M    

 endif (8) 
and the quantized function 
 1 1 1( ) ( / )n n W nf m m M        (9) 

which calculates the next slope 1n   using an independent 

variable 0,..,nm M  and user-definable parameters 

( , , )d uM l l  , ( , )W   , 0m . As can be seen in (9), 

the slope 1n   varies in the range from ( W  ) to W . 

For the selected set of parameters { 1.6W  , 1.2   , 

5dl  , 30ul  , 1000M  , 0 100m  }, Fig. 3 illustrates 

the neuron slope learning of the statistics of the 64-QAM 
signal convolved by channels Mp-(A,C,E); the Mp channel 
characteristics are described in the next section (see Fig.4). 

The introduction of an adaptive part into the neuron slope 
in (9) is resulting in the complexity increase of the JEM-AS 
algorithm. It is the result of additional calculations of a 

posteriori quantities { VS
nu , nu , VS

ne , ne , 1
VS
nb , 1nb } as well 

as the „if-else” decision rule (8) and the quantization 
function (9). Although relatively simple, these calculations 
should be taken into consideration of the entire benefits of 
the innovated whitener. 

 

Fig. 3. Neuron slope adaptation for 64-QAM signal 
convolved by channels Mp-(A,C,E), SNR=30 dB. 

IV. SIMULATION RESULTS 

The efficiency of the JEM-AS algorithm is considered 
through its influence on the effective equalizer 
performances given in terms of the MSE convergence and 
the equalization success index (ESI); the ESI is defined as 
the ratio between the number of successful equalizations 
and the total number of Monte Carlo runs. The JEM-AS is 
compared to the original JEM-W algorithm given in (3) 
aiming to determine the increase or decrease of the ESI 
index which is closely related to the presence of the error 
propagation effects. The performance testing environment 
is the system simulator including the m-QAM, m=(16,64), 
signal transmitter, the time-invariant multipath channel 
adding the white Gaussian nose and the Soft-DFE at the 
receiver side. 

 

Fig. 4. Attenuation of multipath channels Mp-(A,C,E). 

Fig. 4 presents the normalized attenuation response of 
three ray multipath channels Mp-(A,C,E) which are, 
respectively, scaled by factors 0.6 (-2.22 dB), 1.3 (1.14 dB) 
and 1.1 (0.41 dB); the channel Mp-A is identified as 
moderate and Mp-(C, E) as severe ones. The Mp channel 
model is involved in the transmitter filter with a roll-off 
factor of 0.12. The signal-to-noise (SNR) ratio for the 16-
QAM and 64-QAM transmission is, respectively, 25 dB and 
30 dB. 

The Soft-DFE switches operation modes for MSE 
threshold levels {TL1=1.3 dB, TL2=-5.9 dB, TL3=-7.8 dB} 
and {TL1=8.0 dB, TL2=-1.9 dB, TL3= -4.6 dB}, 
respectively, for 16-QAM and 64-QAM signal.  

The user-definable parameters for the JEM-W, JEM-AS 
and JEM-D algorithms are selected for 16-,64-QAM signal 
as follows: 

19
,16 2W

 , 22
,64 2W

 , 18
D,16 2  , 21

D,64 2   

,16 12.0D  , ,64 1.95D  , 16 3.0  , 64 1.2  . The rest 

of user-definable parameters for the JEM-AS { 132  , 

5dl  , 30ul  , 0 100m  , 1000M  } is the same for both 

signals. 
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The MSE and ESI characteristics, presented in Figures 5-
7, are obtained, respectively, for 200 and 10000 
independent runs initiated with a random carrier phase 
taken in the range (0 2 ) . The fixed slope W  in 

recursions (3) and (9) is varied in the range 

,16 (4.0 7.0)W    and ,64 (1.0 2.2)W    radians. Fig. 5a 

presents the influence of the adaptive slope on the MSE 
convergence for the 16-AM signal for two values of the 
slope ,16 (5.0,7.0)W   and Fig. 5b compares MSE 

convergence for JEM-AS and JEM-W algorithms using the 
same slope ,16 7.0W  . The same tests are repeated with 

the 64-QAM signal using a different set of slopes 

 ,64 1.6,1.8W  , Fig.6. As can be seen in Figures 5a and 

6a, the fixed part of the adaptive slope determined by 
equation (9) has the ability to change the MSE convergence 
rate with neglecting effects on the residual MSE in the 
steady-state. In other words, the adding of the adaptive 
slope does not degrade the effective MSE convergence 
obtained by the original JEM-W algorithm supposing the 
ESI index is 100%. It is verified by the results in Figures 5b 
and 6b that compare the MSE convergence achieved by the 
JEM-W and JEM-AS algorithms using the same fixed slope 

,16 7.0W   and  ,64 1.6W  . 

 
(a) 

 
(b) 

Fig. 5. MSE , 16-QAM, Mp-(A,C,E): a) JEM-AS, 
(5.0,7.0)W  , b) JEM-W and JEM-AS for 7.0W  . 

Fig. 7 presents the influence of JEM-W and JEM-AS 
algorithms on the ESI index for the 16- and 64-QAM 
signals in the case of severe channels Mp-(C,E). The 
corresponding results obtained for the channel Mp-A are 

not presented in Figures for the reason of clarity since the 
ESI reaches values of 100%.  As can be seen in figures the 
JEM-AS algorithm increases equalization successfulness 
(expects for the 16-QAM with Mp-C) as a result of the filter 
mismatch decrease between the whitener setup at the end of 
the blind mode and the SFBF setup at the beginning of the 
soft transition mode. In fact, the better quality of the channel 
spectrum estimation achieved by the JEM-AS algorithm 
can be seen as a smoothing factor that mitigates the error 
propagation effects appearing at the time of the equalizer 
structure-criterion switching. 

 
(a) 

 
(b) 

Fig. 6. MSE , 64-QAM, Mp-(A,C,E): a) JEM-AS, 
(1.6,1.8)W  , b) JEM-W and JEM-AS for 1.6W  . 

V. CONCLUSION 

The paper proposes the JEM whitening algorithm with an 
adaptive neuron slope to reduce the feedback filter 
mismatch effects present in the Soft-DFE using the 
whitening algorithm with a fixed slope. Improving the 
received signal whitening, the algorithm with an adaptive 
slope effectively softens the equalizer structure-criterion 
switching from the blind to the soft operation mode. The 
efficiency of the innovated algorithm is evidenced by the 
increase of the equalization successfulness, and it is 
particularly evidenced for the 64-QAM signal and severe 
channels. At the same time, the MSE convergence 
characteristics of the equalizer are preserved practically 
unchanged with respect to the characteristics obtained by 
the JEM whitening algorithm using the fixed slope. 
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Fig. 7. ESI for JEM-W and JEM-AS: a) 16-QAM, Mp-
(C,E), b) 64-QAM, Mp-C, c) 64-QAM, Mp-E. 
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