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Abstract This paper addresses the joint entropy maximization algorithm constrained by the variable leaky factor 

(JEM-VL) aiming at mitigating the feedback filter (FBF) mismatch effects characterizing the operation of the 

decision feedback equalizer which, at the start of adaptation, swaps positions of feedforward and feedback filters so 

that the latter acts as a linear all-pole whitener of the received signal. The FBF mismatch is a result of disparity 

between the FBF setup achieved in the blind mode by observing channel outputs and an excepted FBF setup in the 

tracking mode which is driven by detected data symbols.  Depending on the given signal complexity and inter-

symbol interference severity, the FBF filter mismatch is typically manifested by the equalizer convergence 

instability or even the catastrophic error propagation effects arising at the time of the equalizer structure-criterion 

switching from the blind to the tracking operation mode. The constraint of superfluous coefficients of the FBF filter 

by means of the JEM-VL algorithm eliminates the equalizer convergence instability at the time of its switching and, 

consequently, increases equalization successfulness. The efficiency of the JEM-VL algorithm is verified by 

simulations using the 64-QAM signal. 

Keywords Blind adaptive equalization, decision feedback equalizer, joint entropy maximization cost, coefficients 

leakage, variable leaky.  

1 Introduction 

The adaptive equalization of linear time dispersive channels is one of the fundamental problems in data 

communications. Traditionally, adaptive equalizers operate with assistance from the training signal (pilot) that 

ensures a quick and precise adaptation of equalizer parameters. On the other hand, the transmission of pilots is 

unproductive from the perspective of efficient exploitation of the available channel bandwidth [1-3]. Particularly, it 

becomes critical in the system environments calling for a frequent sending of pilots [3]. This spectral efficiency 

problem has created unsupervised (blind) equalization which has no access to a pilot and, hence, increases the 

effective system data throughput. 

In the area of blind equalization a decision feedback equalizer structure is of a particular research interest 

because of its performance and implementation advantages over a liner equalizer (LE). As well-known, the decision 

feedback equalizer (DFE) combines linear feedforward (FFF) and feedback (FBF) filters where the latter exploits 

the previously detected symbols to cancel the post-cursor inter-symbol interference (ISI). Based on the assumption 

of correctly detected symbols, the DFE removes the post-cursor ISI more efficiently than the corresponding LE, 

without noise enhancement and by using a smaller number of coefficients [4]. On the other hand, the performance 

of DFE can be seriously degraded by erroneously detected symbols when they propagating through the decision-
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feedback loop [4]. Although present in both blind and non-blind DFEs, the phenomenon of error propagation is 

inherently present at early beginning of a DFE blind adaptation process threatening to break it off. 

Based on the recent developments, the existing solutions of DFE blind adaptation may be divided into two major 

approaches. In the first approach, the FFF and FBF filters of DFE are jointly optimized by means of the same cost 

criterion [2], [5] and in the second approach they are optimized independently of each other [6-9]. The joint 

optimization of FFF and FBF filters is practical from the implementation point of view, but it is characterized by a 

convergence state that can lead to the so-called degenerative solutions [10] when the equalizer does not recover 

transmitted data but generates output symbols by its own. As it is proved in [10,11], this pathology can be avoided 

by additional constraints depending on the given signal constellation complexity and channel severity. In the second 

approach, which is motivated by the idea of evading the error propagation effects, the self-optimized DFE (SO-

DFE) [7] temporarily drops a hard decision device, transforms itself into the linear blind equalizer which places the 

FBF filter before the FFF one to open the channel signal enough and then switches itself back to the classical DFE 

structure performing decision-directed minimum mean square error (MMSE) equalization. This approach is based 

on the theory that the infinite-length MMSE-LE and MMSE-DFE equalizers share the same components [7,12] 

which, in the frequency domain, can be factored into the all-pole recursive amplitude equalizer and the phase 

equalizer which, respectively, compensates for minimum and maximum components of a channel transfer function.  

The basic limitation of the SO-DFE scheme comes from its primary model that assumes the equivalence between 

the MMSE-LE and MMSE-DFE equalizers. This assumption is generally violated in practical implementations 

based on the finite-impulse response (FIR) filters; as opposed to the optimal infinite-length and finite-length FFF 

filters which presents the structure similarities, the optimal finite-length FBF filter is not necessarily minimum 

phase as its infinite-length counterpart [13, 14]. This SO-DFE structure discrepancy, denoted as a filter mismatch, is 

being manifested through the adaptation process of the FBF filter which, in the blind mode operates as an all-pole 

filter (whitener) of the received signal and then, in the tracking mode, continues adaptation as the decision-directed 

equalizer. Another weakness of the SO-DF scheme, which is closely related to the previous one, relates to its 

sudden structure-criterion switching (transition) from the blind to the tracking mode. Depending on the signal 

constellation complexity and channel severity, this transition can induce a bursting of signals and parameters 

leading the equalizer convergence towards instability and even failure.   

The blind DFE solutions presented in [8,9,15] demonstrate several different algorithms and/or structure 

improvements that evade or mitigate limitations of the SO-DFE scheme. The DFE in [8], called Soft-DFE, 

introduces the new “soft” FBF (SFBF) filter optimizing the Joint Entropy Maximization (JEM) cost through two 

operation modes. In the blind mode, acting as an all-pole amplitude equalizer (whitener) of the received signal, the 

SFBF compensates more efficiently for deep spectral nulls than the corresponding whitener controlled by the 

extended LMS algorithm [7] and then, in the next soft transition mode, continues entropy maximization as a soft 

decision-directed equalizer performing in between data whitening and data recovery; effectively, the SFBF 

improves the received signal whitening and softens the process of the equalizer structure-criterion switching. In [9], 

the noise-predictive DFE scheme [16] has been proposed which evades the FBF filter mismatch by avoiding both 

the structure and the criterion switching. It employs two FBF filters, placed before and after the FFF filter as well as 

the decision rule which softly transforms the equalization between extreme linear and hard decision operating 

modes; the method is verified by the 64-QAM signal. In [15], the self-optimized DFE uses the zero-pole whitener 

instead of a commonly used all-pole whitening filter. The zero-pole whitener is viewed as the most general 
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whitening filter to equalize different types of channels and to approximate a long FBF filter with a smaller number 

of poles and zeros preventing the error propagation phenomena. 

Most recently, in [17] and [18], we have innovated operation of the SFBF filter in the blind mode by introducing 

the coefficient leakage term [19,20] into the JEM whitening algorithm; the goal was to avoid the overgrow of the 

whitener’s coefficients caused by the (64,128)-QAM signals which presented larger variance distributions at the 

channel output then the (16,32)-QAM signals. In [17] we varied both the leakage rate and the neuron slope to 

improve the equalizer MSE convergence performance for the 64-QAM signal, and in [18], for the fixed leakage 

rate, we considered the influence of the adaptive neuron slope on the convergence of the whitener for the (16, 64, 

128)-QAM signals. Motivated by these results and the work in [21], which proposes a variable leaky LMS 

algorithm for linear filter estimation and system identification problems, in this paper we have introduced a variable 

leaky into the JEM whitening algorithm to eliminate undesirable effects of the SFBF filter mismatch on the Soft-

DFE performance. Aiming to maintain a good balance between the MSE convergence rate and the residual MSE of 

the Soft-DFE, our focus in this paper is to improve the equalization successfulness index which is used as an 

effective measure of the equalizer robustness to both the SFBF mismatch and sudden structure-criterion switching. 

The rest of the paper is organized as follows. Section 2 describes a system model and the operation of the Soft-

DFE scheme through three operation modes. Section 3 recalls the backgrounds and algorithms of the SFBF and 

defines the difficulties of the neuron slope selection in the context of SFBF mismatch. In Section 4, the JEM-type 

whitening algorithm with the variable leaky term is derived. Section 5 presents simulation results that demonstrate 

the impact of the variable leaky JEM whitening algorithm on the effective performances of the Soft-DFE equalizer 

with the 64-QAM signal. The final Section 6 addresses conclusions. 

2 Soft-DFE: Basics of structure-criterion adaptation 

Throughout this paper, the fractionally-spaced Soft-DFE equalizer is considered as the receiver in a single carrier 

system presented in Fig. 1. The sequence of data symbols { }na , generated at the rate 1/T (T is symbol period in 

seconds), consists of i.i.d. complex, zero-mean, variables with a finite variance and sub-Gaussian distribution. The 

time-invariant channel pulse response { }nh represents combined effects of the transmitter filter, channel impulse 

response and anti-alias filter at the receiver side. The noise is real Gaussian with zero-mean and independent of the 

input data. In the equalizer steady-state, the signal ( )x t at the input of the fractionally-spaced FFF filter is sampled 

at the rate 2/T and odd and even samples 0 ,( / 2) n ix t nT iT x    are alternatively shifted to the delay lines of the 

corresponding FIR symbol-spaced filters defined with coefficient vectors ,1 ,[ ,..., ]Ti i i Lc cc , 1, 2i  . Otherwise, in 

the equalizer blind-state when FBF acts as a front-end equalizer, samples ,n ix  are applied to the FBF filter including 

two FIR filters defined by vectors ,1 ,[ ,..., ]Ti i i Nb bb .  

 

 

Fig. 1 Blok diagram of the system with Soft-DFE. 
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To achieve the optimal coefficients setting and carrier phase recovery, the Soft-DFE passes through three 

operation stages named: blind acquisition, soft transition and tracking. During the blind operation mode, the Soft-

DFE effectively acts as a linear fractionally-spaced equalizer (FSE) which divides the equalization task between 

four signal transformers ordered in the following cascade: gain control (GC), whitener (WT), equalizer (TE) and 

phase rotator (PR), Fig. 2a. The gain control GC and whitener WT are coupled in pair where GC recovers the 

transmitted signal energy using a slightly modified single-coefficient equalization rule [7] and the JEM- whitener 

equalizes a non-flat channel spectrum. At the same time and independently of (GC+WT), the equalizer TE 

controlled by constant modulus algorithm (CMA) [22] compensates for a phase distortion (introduced by a channel-

whitener combination). In the next soft transition mode, one of two JEM-whiteners, selected according to energy 

criterion, transforms itself  back into the decision-directed soft feedback filter SFBF which continues with JEM 

adaptation, while the equalizer TE switches adaptation rule from the CMA to the decision-directed LMS (DD-

LMS), Fig 2b. Effectively, during the soft transition mode, the Soft-DFE is optimized by the combined DD-

(MMSE+JEM) criterion. Finally, for the signal eye opened enough, the complete Soft-DFE is being switched into 

the classical MMSE-DFE controlled by the DD-LMS algorithm (tracking mode). 

The phase rotator PR is given in the form of the digital phase locked-loop which operation is modified in a way 

to avoid the contestation spin effects following the CMA equalization of high-order QAM signals [1]. PR begins 

with the carrier phase acquisition in the blind mode by using the reduced signal constellation including only twelve 

corner-symbols with the largest energy, and then, for the enough opened signal eye, continues operation with the 

full constellation. The carrier phase estimation is not a particular focus of this paper. 

 

           

(a)               (b) 
Fig. 2 Scheme of the Soft-DFE equalizer. a blind acquisition, b soft transition mode 

 

The Soft-DFE structure-criterion adaptation is controlled by the MSE estimator which has a task to switch both 

the structure and the adaptation criterion according to the a priori selected MSE threshold levels (TL): for TL1 the 

Soft-DFE switches itself from the blind to the soft transition mode, for TL2 from the soft transition to the tracking 

mode and the threshold TL3 switches PR operation between reduced and full signal operation. The MSE threshold 

TL3 is also used as a measure of equalization successfulness quantified by the equalization success index (ESI). 

3 Soft Feedback Filter: backgrounds and JEM algorithms 

In this section, we shell recall the information theoretic backgrounds of the SFBF filter (equalizer) and its practical 

realization in the complex domain. In contrast to the MMSE-FBF, which commonly exploits hard-decision symbol 

estimates to cancel the post-cursor ISI, the SFBF performs the same task employing soft-decision symbol estimates 

provided by a monotone function (neuron) ( )g   that maximizes the joint Shannon’s entropy (JEM) according to the 

blind deconvolution theory by Bell and Sejnowski [23]. As illustrated in Fig. 3, the neuron function ( )g   in the 

structure of the SFBF performs mapping of inputs symbols nz  in a way that maximizes the joint entropy of output 



5 

 

symbols nr  and, assuming the previous output symbols are correct1, n j n jr a  , 1,...,j N , eliminates their 

interfering effect on the current channel output nx ; the corresponding input-output relation of the SFBF is given by 

T
n n n nz x b r  where ,1 ,[ ,..., ]Tn n n Nr rr  and ,1 ,[ ,..., ]Tn n n Nb bb  are column vectors and the current output is 

(z )n nr g .  

 

Fig. 3  Soft feedback filter: basic model. 
 

Assuming the previous symbols are correctly detected and channel outputs are noiseless2 the joint Shannon’s 

entropy ,1 , 1[ ,..., r ]n n NH r   of the SFBF model presented in Fig. 3 is given by [24] 

                             

( ) ln n
H n

n

r
J E

z

  
  

  
b                   (1) 

where {}E   denotes statistical expectation. It is worth to be noted that the main idea underlying the SFBF equalizer 

model is the observation that the maximization of the joint entropy ( )H nJ b  in the presence of ISI (i.e., 

dependence) leads to the reduction of the statistical dependence between the current output (z )n nr g  and the 

previous outputs ( n jr  , 1,...,j N ) and, hence, to ISI suppression. In the probability density function domain, the 

SFBF transforms the PDF of the input sequence into the sequence presenting the uniform distribution in a limited 

range of variables { }na .  

The selection of the mapping function ( )g   is a key point in the SFBF design. According to the theory in [23], the 

function ( )g   is selected to suitably fit the expected cumulative distribution of inputs nz  in accordance with the 

relation ( ) ( )

z

g z p u du



  , ( ) [0,1]g z  ,  where ( )p z  is PDF of an input z . Consequently, the neuron’s slope 

( ) / zn ng z   has to match the PDF of an input nz , i.e., ( ) ' (z)ng z p . But, in practice, the selection of neuron 

function is not a simple task since the PDF of ISI in a channel output nx , and thus of nz  
(

T
n n n nz x b r ) is 

generally unknown and there is also a lack of appropriate nonlinearities. To resolve this difficulty one approach is to 

use parametric nonlinearities ( , )ng z   where the parameter   can be employed as a tool to vary the “slope” of the 

neuron in a way to be as close as possible to the expected cumulative distribution of ISI. Generally, the optimal 

                                                        

 

 
1 The hypothesis of correctness of previous detected symbols is commonly use in the DFE analysis. 
2 Although the outputs nz  are not noise free, the noiseless system model is assumed in order to simplify the derivation of the JEM algorithm.  

In simulations presented in the paper we have used more realistic noisy channels. 
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slope enabling a neuron unit to maximize the joint entropy must be inversely proportional to the variance of its 

input distribution. 

In the following, we will present the SFBF equalizer extended to the complex domain and identify difficulties of 

the neuron slope selection reflecting complexity of the applied QAM signal constellations and specifics of the self-

optimized Soft-DFE scheme. The complex model of the SFBF equalizer is designed for the complex-valued 

continuously differentiable function of complex variable nz  [8]  

                             2
( , ) 1n n ng z z z    ,               (2) 

and its stochastic gradient (ascent) algorithm obtained for the cost ( ) ln /n n nJ r z  b is given by 

           
 2 *

1, , 1n j n j n n n jb b z z r     , 1,...,j j                   (3) 

where   is the real positive number which varies the neuron’s slope,   is the adaptation step-size and the operator 

  denotes complex conjugation. 

In order to meet the operation requirements of the Soft-DFE scheme, the basic model of the SFBF is modified 

according to the two following heuristic simplifications:  

 in the blind mode, the SFBF acts as a linear all-pole filter (see WT in Fig. 2a) optimized by the JEM-type 

whitening algorithm (JEM-W) given by  

           
 2 *

1, j , 1n n j W n W n n jb b u u u     , 1,...,j N              (4) 

 in the soft transition mode, based on the hypothesis of correctly detected symbols, the SFBF transforms itself 

into a soft decision-directed equalizer (see SFBF in Fig. 2b) controlled by the JEM-D algorithm given by 

                    2 *

1, ,
ˆ1n j n j D n D n n jb b z z a     ,              (5)  

where  ,W D   are adaptation step-sizes, and  ,W D   are neuron-slopes; in recursion (4) the index i  of the 

vector ,n ib  is dropped for simplicity. 

Thus, based on the above structure and algorithm modifications, the SFBF equalizer transforms the PDF of the 

input sequence using two different slopes to match statistics of the input data provided that the step-sizes  

 ,W D   are suitably selected to guarantee stability of JEM-W and JEM-D algorithms. In the blind mode, the 

whitener WT manipulates the unknown PDF of the received signal in order to reconstruct the second-order statistic 

of the given signal, and the optimization of the JEM-W algorithm is achieved by varying the neuron-slope W . In 

the next soft transition mode, the SFBF continues to deal with the PDF of the residual post-cursor ISI acting as a 

higher-order statistics equalizer; in this stage, the JEM-D algorithm is driven by symbol estimates na


 of the given 

signal, and its optimization is achieved by the neuron-slope D . According to this scenario, the expected variance 

of ISI of the channel outputs nx  is larger than the corresponding variance of symbol estimates nz  and therefore the 

selected slope W  should be smaller than the slope D . Besides, it is worth to be noted that the slope D  can be 

seen as a statistical constant for the given signal constellation since the JEM-D algorithm (5) correlates the pseudo-

error signal  2
1n D nz z  with symbol estimates ˆ

na . 
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To summarize effectiveness of the SFBF we will recall the optimal neuron-slope selections 

,16 ,16{ 1.4, 12}W D   , ,32 ,32{ 1.2, 10}W D    and ,64 ,64{ 0.2, 2.0}W D    achieved, respectively, for signal 

constellations 16-QAM, 32-QAM, 64-QAM [17] which present distributions with an increasing variance, and 

emphasize two facts of particular importance. First, the selected slopes prove the inverse relationship between the 

neuron-slopes and the variance of input distributions. Second, in dealing with the neuron-slopes W  it has been 

verified that the selected slopes W  for 16- and 32-QAM signals provide a good trade-off between the MSE 

convergence speed, residual MMSE and the equalization successfulness. On the other hand, it is not the case for the 

64-QAM signal where the equalizer performance suffers from a slow convergence rate and high residual MSE for a 

small W  ( ,64 0.2W  ). This behaviour is a result of deficiency of the JEM-W algorithm which for small values of 

the slopes W  has no ability to estimate deep spectral fades of channel output. In fact, for small slopes W  the 

influence of the quadratic term in the prediction error  2
( , ) 1n W n n W ne u u u    in (4) is not sufficient to 

provided adequate estimates. Otherwise, by increasing values of the slope ,64W , the Soft-DFE presents better 

convergence characteristics but its equalization successfulness gets worse due to an overgrowth of the whitener 

coefficient norm. To eliminate described deficiency of the JEM-W algorithm with the severely corrupted 64-QAM 

signal, we have extended JEM-W algorithm with the coefficient leakage term [17] which constrains a coefficients 

overgrowth. In fact, by introducing the coefficient leakage we have open a space for using larger neuron-slopes W  

and in this way extended the operation of JEM-W algorithm toward more complex signal constellations than (16, 

32)-QAM ones. The price of this improvement, however, is a more complex implementation of the JEM-W 

algorithm whose optimization, besides the adaptation step-size and the neuron slope, depends also on the leakage 

factor which determines the coefficient leakage rate. 

4 JEM Whitening Algorithm with Variable Leaky 

Based on the previous findings, it is obvious that the more complex signal constellations than (16, 32)-QAM 

require the JEM-whitener with an adaptive neuron-slope and/or some an additional signal processing more robust to 

larger dynamic signals. Besides, it can be a means to facilitate free parameters selections aimed at achieving the 

desired trade-off between the MSE convergence characteristics and the equalization successfulness.  

The innovated JEM-W whitening algorithm presented in this section remains a fixed neuron-slope W , as in the 

recursion (4), and introduces a variable leaky factor to adjust the coefficient leakage rate with respect to the quality 

of the whitener prediction error. The motivation underlying this approach is observation that the forcing of larger 

neuron-slopes W , which provides a fast and efficient estimation of deep spectral fades at the early beginning of the 

received signal whitening process, must be followed by larger leakage rates aimed at constraining the coefficients 

overgrowth  and, also, that inadequately large coefficient leaky rates can degrade the equalizer convergence 

performances. 

In the following we will define the JEM whitener constraining superfluous coefficients by leaking them off and 

then derive the algorithm which performs adaptation of the coefficient leakage process. The JEM cost ( )nJ b  

modified by the term 
2

B b  which penalizes a whitener coefficient vector norm overgrowth is    
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2

( ) ( )L B B BJ J  b b b  , 
2

( )B BJ b b
                

(6) 

and the corresponding extension of the JEM-W algorithm (JEM-FL) is given by 

  2 *

1, j ,(1 ) 1n n j W n W n n jb b u u u       , 1,...,j N            (7) 

where 0   is the leaky factor which determines the coefficient leakage rate; the index B in (6) refers to the blind 

operation mode. As can be seen in (7), the leaky term nb  acts in opposition and independently of the entropy-

gradient term controlled by both the whitener outputs nu  and the neuron-slope W , and in this manner it 

persistently decreases the magnitude of whitener coefficients even though the whitener input is turned off and/or its 

outputs converge to zero. To diminish undesirable effects of this scenario, the leaky factor is selected to be as small 

as possible (
2

( )B H BJ b b ) which is a common practice in coefficient leaky-based filter estimation problems to 

trade-off bias and variance of estimates [20]. On the other hand, as it is mentioned before, using larger slopes W  in 

order to improve the Soft-DFE performance with higher-order QAM signals, asks for adequately large leaky factors 

able to constraint superfluous coefficients. This has been the motivation to employ a adaptive leaky factor for JEM 

whitening algorithm which varies between zero and some predetermined positive value max . 

In the case of the JEM-whitener, the adaptation of the leaky factor is based on the a posteriori error analysis and 

the heuristic punish/award discrete rule [21] as well as the ability of the JEM whitener to efficiently manipulate the 

PDF of the received signal. The a posteriori error analysis includes the a posteriori errors of the whitener 

predictions achieved with and without coefficient leakage. The a posteriori error VL
ne  obtained by the variable leaky 

JEM-VL algorithm is given by 

             
2 *

1 (1 )n n n n W n W n n ju u u      b b b  , 1,...,j N         (7) 

             1

T

n n n nu x  b u  

             
2

(1 )VL
n n W ne u u      

and the a posteriori error W
ne  obtained by the JEM-W ( 0  ) algorithm is given by  

             
2 *

1 (1 )n n W n W n n ju u u    b b                (8)  

             1

T

n n n nu x  b u  

             
2

(1 )W
n n W ne u u   .   

It should be noted in (7) and (8) that both errors are obtained using the same (current) value of the input nx  while 

the a posteriori value of the output nu  in (7) and (8) is, respectively, obtained for the current leaky n  and for zero 

leaky ( 0  ).  In the next step, the quality of errors is decided by using the punish/award heuristic given by the 

following if-else relation 

if VL W
n ne e  then                    (9) 

set 1 max( ,0)n n dm m l     

else 
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set 1 min( , )n n um m l M    

end if 
 

which analyses the difference VL W
n ne e    and decides when and how much to increase or decrease the leaky. 

Finally, the amount of the current leaky change is calculated by the quantized exponential function 

max( ) ( / )n n nf m m M                  (10) 

 
where 0,...,nm M  is an independent variable, and ( , , )d uM l l  , max  , 0m  are user-definable parameters. 

In order to gain a better understanding of the JEM-VL algorithm influence on the whitener and the equalizer 

behaviour, we have varied the maximum value of the leaky factor max , and the corresponding results of 

simulations are presented figures 4 and 5;  the presented results are averaged over 200 Monte Carlo runs for the 64-

QAM signal, the Mp-E channel (see Fig. 6) under a signal-to-nose ratio (SNR) of 30 dB, the neuron-slope {

2.0W  , 1.95D  } and the set of leaky parameters { 13 12 11

max (2 , 2 , 2 )    , 400M  ,  6dl  , 40ul  , 

0 40m  }. Fig. 4 presents the influence of the maximum leaky rate on the time variation of the (a) a posteriori 

error VL
ne , (b) difference VL W

n ne e   , (c) variable leaky factor n  and (d) whitener vector norm Bb . In latter 

figure, we have compared the influence of the JEM-FL and JEM-VL algorithms on the whitener vector norm 

overgrowth using the same set of leaky factors max  . 

 

             

                      (a)                (b) 

                           

     (c)               (d) 

Fig. 4 Influence analysis of the maximum leaky 13 12 11

max (2 , 2 , 2 )     on the time variation of (a) a posteriori 

error VL

ne , (b) a posteriori error difference VL W
n ne e   , (c) leaky factor n , (d) whitener vector norm Bb .  
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Fig. 5 presents one-pass MSE convergence characteristics of the Soft-DFE obtained with JEM-FL and JEM-VL 

algorithms under the same conditions as in the case of Fig. 4. It is evident that the JEM-VL algorithm provides 

better convergence characteristics than JEM-FL for the same leaky max  . Also, it should be noted that the JEM-

VL for 11
max 2   and the JEM-FL for 132   demonstrate a similar influence on the equalizer convergence. 

 

 

Fig. 5 One-pass MSE convergence of Soft-DFE for JEM-VL: 11 12 13

max{ (2 ,2 , 2 )}     and JEM-FL: 
11 12 13{ (2 ,2 , 2 )}     algorithms, 2.0W  , 1.95D  , Mp-E, SNR=30 dB.  

 

Based on the previous results, two points should be stressed. First, the using too large (fixed) leaky factors with 

the JEM-FL algorithm is prohibited since they degrade whitener coefficient estimates and, hence, the equalizer 

convergence despite of fact the JEM-whitener is suspended after the equalizer transition to the soft-transition mode. 

Second, the JEM-VL algorithm, which varies the leaky factor in a range from zero to max , provides better 

regularization of the whitener coefficient vector norm then the JEM-FL for 
max   and also softens the equalizer 

transition process from the blind to the tracking operation mode. 

5 Simulation results: Soft-DFE performance 

Simulation results presented in this section demonstrate influence of the SFBF equalizer, i.e. JEM-(W,FL,VL) 

algorithms, on the effective performance of the Soft-DFE equalizer with a particular focus on the efficiency of the 

JEM-VL algorithm. The performance evaluation is carried out for the 64-QAM single-carrier system with the Soft-

DFE equalizer at the receiver side. The simulation results are given in the terms of the equalizer MSE convergence 

and the equalization success index (ESI) defined as the ratio between the number of successfully completed 

equalizations and the total number of Monte Carlo runs. 

The 64-QAM system is characterized by the multipath (three-ray) channel model (Mp) involved in the 

transmitter filter with a roll-off factor of 0.12. Figure 6 depicts a normalized attenuation response of the Mp 

channels which are obtained for attenuation and propagation parameters selected to gradually increase an ISI level. 

In the given class of Mp channels, Mp-A is declared as moderate and Mp-(C, E) as severe; the SNR at the output of 

the channel is 30 dB. For the Soft-DFE described in Section 2, the FFF and FBF filter lengths (given in T intervals) 

are, respectively L=24 and N=5, and the initial values of TE coefficients are all zero except of the central ones 

1, 2, 1.0r rc c  . The adaptation step sizes for FFF [FBF] in blind, soft and tracking modes are, respectively, 

212CMA  [ 222W
 ], 202LMS   [ 212D

 ] and 162LMS   [ 142LMS  ]. The adaptation of the GC is 

controlled by two steps 11 20{2 ,2 }   selected to provide a fast power recovery of the transmitted signal and, also, to 
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avoid the WT in doing the same task since they are coupled. The neuron-slope W  for JEM-(W,FL,VL) algorithms 

is used as a free parameter, user-definable parameters of the leaky adaptation rule for the JEM-VL are selected to be 

{ 11

max 2  , 400M  ,  6dl  , 40ul  , 0 40m  } and the optimal neuron-slope for the JEM-D algorithm with the 

64-QAM signal is 1.95D   [19]. The carrier phase rotator PR switching between the reduced and the full signal 

constellation is controlled by the MSE threshold TL3, and the boundary separating the reduced signal space 

(including twelve corner-symbols) is defined by the constant modulus equals 71. The three operation modes of the 

Soft-DFE are controlled by the MSE threshold levels given by {TL1=8.0 dB, TL2= -1.94 dB, TL3= -3.0 dB}; the 

selection of thresholds is based on both the worst-case transmission scenario forcing Mp-(C, E) channels and the 

equalizer performances.  

 

          Fig. 6 Attenuation characteristics of Mp-(A, C, E) channels. 
 

The equalizer MSE convergence curves, presented in Fig. 7, demonstrate the influence of the neuron-slope W  

on the JEM-VL performance and, hence, on the effective equalizer convergence characteristics. The selection of the 

maximum leak value 11

max 2   is based on the results presented in the previous section and on the evaluation of 

the ESI index aiming at achieving the best trade-off between the convergence rate, residual MSE and the ESI. 

Evidently, for the moderate Mp-A channel the Soft-DFE presents practically the same MSE convergence 

characteristics for the neuron-slope range of interest (1.6 2.4)W   . On the other hand, the influence of the slope 

W  on the MSE convergence is clearly demonstrated in the case of severe channels Mp-(C, E) channels. It should 

be noted that the desired convergence trade-off is reached for values of the slope W  in the vicinity of the slope 

1.95D   which determines optimal performing of the JEM-D algorithm for the 64-QAM signal. 

 

            

              (a)                (b) 
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       (c) 

Fig. 7 MSE convergence characteristics obtained with JEM-VL:{ 11

max 2  (1.4,1.6,1.8,2.0,2.4)W  } 

and averaged over 200 Monte Carlo runs. a channel Mp-A, b channel Mp-C, c channel Mp-E 
  

Fig. 8 presents influence of three different whitening algorithms JEM-W:(
 2.0W  ), JEM-FL:( 132  , 

2.0W  ) and JEM-VL:( 11

max 2  , 2.0W  ) on the MSE convergence. In this test, we have also addressed the 

LMS algorithm [7] in order to stress its weakness to compensates for deep spectral nulls of the received signal, a 

fact that is evident in the case of the Mp-(C,E) channels; for the purpose of a correct comparison of LMS with JEM-

type algorithms, the soft transition mode in the Soft-DFE scheme was temporally suspended. On the other hand, the 

JEM-type algorithms demonstrate a high robustness to severe ISI channels. Besides, the equalizer convergence for 

both the JEM-FL and the JEM-VL algorithms results in a faster convergence in comparison with the original JEM-

W algorithm. If we neglect the influence of the JEM-FL and JEM-VL algorithm on the equalization successfulness, 

it is interesting to note that the JEM-VL for 11

max 2   influences the equalizer convergence on a similar way as the 

JEM-FL with 132   does despite the fact that the maximum leaky value max  is four times larger than the leaky 

factor in the JEM-FL. It is result of a time variable leaky rate in the JEM-VL algorithm that employs the coefficient 

leakage only when and in an amount it is necessary. Let us remember that the JEM-FL for the fixed leaky factor 

112   dramatically degrades MSE convergence, see Fig. 5. 

  

            

 

          (a)                (b) 
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                    (c) 
Fig. 8 MSE convergence comparison for four whitening algorithms: LMS, JEM-W ( 2W  ), JEM-FL (

2.0W  ) and JEM-VL ( 2.0W  ). a channel Mp-A, b channel Mp-C, c channel Mp-E 

 
To get a deeper insight into the JEM-(W,FL,VL) algorithms influence on the equalizer convergence behaviour at 

the time of the structure-criterion switching, we carried out extensive measuring of ESI index which used as a 

quantitative measure of the equalizer ability to successfully perform structure-criterion switching. This test is also 

used to get a better view of the algorithms influence on residual MSE (RMSE) which is measured in the steady-state 

of successfully finished equalizations. Fig. 9 presents the ESI and RMSE performance of the equalizer obtained by 

JEM-W, JEM-FL:( 132  )  and JEM-VL:( 11

max 2  ) algorithms that vary the neuron-slope W  in a relatively 

large range from 1.6 to 2.4; in the given curves each measuring point is the result of averaging over the 10000 

Monte Carlo runs. The obtained results have revealed the following important findings. First, the highest ESI index 

is achieved by the JEM-VL algorithm for the neuron-slope W  in the range from 1.8 to 2.0; the ESI for Mp-C and 

Mp-E channel is, respectively, higher than 99.7% and 99%. Also, this neuron-slope range coincides with the slope 

range for which the equalizer achieves the best convergence characteristics (see figures 7 and 8). Second, the 

achieved RMSE performance does not favour any of the applied JEM algorithms. These results indicate that the 

potential degradation of the RMSE introduced by the coefficient leakage (resulting from a biased estimate of 

whitening) is not of practical importance. Third, the JEM-W algorithm demonstrates an evident inferiority to the 

ESI index for both Mp-(C, E) channels. The corresponding results achieved with the moderate channel Mp-A, 

which are not depicted in the figures for better readability of graphs, are practically the same for all three 

algorithms, the ESI is 100% and the RMSE is less than -28 dB.  

   

          

            (a)               (b) 

Fig. 9 Soft-DFE: equalization success index and residual MSE versus the neuron-slope W  for JEM-W, JEM-FL, 

JEM-VL algorithms and Mp-(C,E) channels. a ESI, b RMSE 
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Based on the previous analysis for the 64-QAM signal, it can be concluded that the JEM-VL algorithm with the 

neuron-slope selected in the range from 1.8 to 2.0 provides the best trade-off between the MSE convergence rate, 

residual MSE and equalization successfulness. Besides, it is interesting to note that the optimal values of the slope 

W  are located in the vicinity of the D , i.e., W D  . This fact simplifies the JEM-VL optimization process since 

it can be started for the neuron slope
W D  , where the slope 

D  is known for the given signal constellation. 

6 Conclusions 

The results presented in this paper provide more evidence of importance of the received signal whitening for the 

Soft-DFE scheme which optimizes FFF and FBF filters independently combining CMA, JEM and MMSE criteria. 

The JEM-FL algorithm using a fixed leaky-factor favours larger neuron-slopes and, in this way, provides a faster 

equalizer convergence rates and lower residual MSE with QAM signals presenting increased variance statistics but, 

on the other hand, it does not guarantee desirable equalization successfulness. This insufficiency is eliminated by 

the variable leaky JEM-VL algorithm which exploits the whitener a posteriori error statistics to adapt the 

coefficient leaky rate. The whitener estimation improvement achieved by the adaptive coefficient leakage mitigates 

the feedback filter mismatch effects, which is verified by simulations presenting the increase of equalization 

successfulness with severe ISI channels. Besides this advantage, the using of variable leaky simplifies selection of 

the whitener neuron-slope value which provides the equalizer performance trade-off. 
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