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Abstract—This paper considers the complex domain Bell-
Sejnowski class neuron in the self-optimized decision feedback 
equalizer structure where an appropriate nonlinearity responds 
with the maximum entropy signal. The presented simulation 
results have proved the stability of the joint entropy 
maximization algorithm during the blind acquisition mode and 
also its ability to mitigate the error propagation effects that 
emerge when the cascade of linear components switches into the 
decision feedback mode.  

Keywords-Blind decision feedback equalization; Bell-Sejnowski 
class neuron model; joint entropy maximization algorithm. 

I. INTRODUCTION  
The ability of the Bell-Sejnowski neurons in the structural 

model to align to the statistical distributions of the input signals 
is one of the most interesting aspects of the independent 
component analysis theory [1]. This property transformed in 
different learning rules was successfully exploited in a number 
of signal processing applications such as blind separations, 
blind deconvolution and probability density function estimation 
[2]. In the field of blind equalization, which is of interest here, 
the Bell-Sejnowski maximum-entropy learning formula was 
applied to the decision feedback equalizer (DFE) and the class 
of joint entropy maximization (JEM) stochastic gradient 
algorithms was derived for the real-valued signals [3]. Also, 
more recently in [4] and [5], the maximum entropy learning 
approach was extended to the complex domain and combined 
with the self-optimized DFE scheme, which was originally 
proposed in [6]. This combination was resulting in a 
performance-efficient and low-complexity blind equalizer 
which can be applied to different systems in a severe 
intersymbol interference (ISI) environment.  

In the self-optimized DFE scheme, the most critical 
component is its recursive part that changes position during the 
activation scenario: 1) in the blind acquisition mode the 
recursive part acts as an all-pole whitener (decorrelator) placed 
in front of a linear equalizer; and 2) after a well finished 
acquisition, it continues adaptation as the feedback filter of 
DFE (see Fig. 1). In this paper we consider the recursive part of 
DFE as a soft feedback (SFBF) filter of the Bell-Sejnowski 
class in the complex domain context. Referring to the complex 
stochastic gradient algorithm of the JEM type in [5], our main 
goal is to gain a deeper insight into the stability of the decorre- 
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Figure 1.  Soft-DFE structure in (a) blind acquisition mode and (b) soft 
transition modes: GC-gain control, R-decorrelator, T-transversal equalizer 

lator in the blind acquisition mode and also to assess the 
performance of SFBF with respect to the error propagation 
phenomenon in symbol intervals after the structure switching.  

II. SELF-OPTIMIZED DFE STRUCTURE 
The activation of the proposed self-optimized DFE (Soft-

DFE), the structure of which is depicted in Fig. 1, is 
characterized by three operation modes: blind acquisition, soft 
transition and tracking [4]. In the blind acquisition mode, the 
cascade GC+R+T effectively acts as a linear equalizer (LE). 
The equalizer T is a / 2T  fractionally-spaced equalizer ( / 2T -
FSE) controlled by constant modulus algorithm (CMA) [7], 
[8], where T  is a symbol interval. Consequently, the 
decorrelator R consists of two all-pole whitening filters. Note 
one of them is coupled with the GC. In the soft transition 
mode, at the beginning of which the structure is switched, the 
joint equalization and carrier phase tracking take place as 
follows: 1) the linear part of the Soft-DFE is the decision-
directed (DD) equalizer minimizing mean-square error 
(MMSE); and 2) the nonlinear part is the soft feedback filter 
maximizing joint entropy. At the moment of structure 
switching the recursive part of one of whiteners (based on 
some criterion) becomes the feedback filter of DFE and, hence, 
the R is suppressed. In the tracking mode, the Soft-DFE 
operates as a classical DD-MMSE DFE. It is worth noting that 
the Soft-DFE can continue to be in a soft transition mode (no 
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tracking mode) in solutions where it is combined with some 
channel coding schemes [9], [10]. Finally, the switching 
control of different operation modes is provided by MSE 
performance monitoring device. This MSE estimator monitors 
the two thresholds: 1TLM −  from blind acquisition to soft 
transition and 2TLM −  from soft transition to tracking mode. 
The latter threshold is defined as a measure of successful 
activation of equalizer. 

III. COMPLEX DOMAIN SOFT FEEDBACK ALGORITHMS 

A. DFE as the  neuron of Bell-Sejnowski class 
The SFBF filter in [3] was considered as a neural unit with 

the corresponding set of adjustable parameters, Fig 2. In this 
context, the input-output description of an activation function 

( )g ⋅ , which is both a memoryless and a monotonically 
increasing nonlinearity, is given as follows: the neuron’s net 
input nz  is the combination of the noiseless channel output nx  
mixing present and past data symbols and the weighted sum of 
previous outputs n jr − , 1,...,j N= , where N  is filter length. 
The objective of the activation function in the given structure 
model is to transform the input sequence nz  with an unknown 
probability density function to a maximum entropy sequence 

( )n nr g z=  using the Bell-Sejnowski class adapting formula. In 

other words, the coefficients { }jb  are the subject of learning 
through an adaptation algorithm that maximizes the joint 
entropy defined by { },1 , 1,..., ln ( )n n N r nH r r E f+⎡ ⎤ −⎣ ⎦ r  where 

( )r nf r  is the joint density function of the input vector 

,1 , 1,...,
T

n n n Nr r +⎡ ⎤= ⎣ ⎦r . 

Based on assumptions commonly used for DFE analysis, 
that is, the input data na  are independently identically 
distributed and zero-mean and the previous decisions are 
correct, n j n jr a− −= , the JEM criterion was suitably simplified 

as { }ln ln n
EM

n

r
J E J E

z
⎧ ⎫∂⎪ ⎪= = ⎨ ⎬∂⎪ ⎪⎩ ⎭

 where E  is expectation and 

J n

n

r
z

∂
=

∂
 is the absolute value of the Jacobian of the 

transformation. Consequently, in the case of stochastic 
gradient ascent learning the corresponding instantaneous 
approximation of EMJ  can be used as the adaptation criterion, 
that is, 

 ln n
EM

n

r
J

z
∂

=
∂

.                              (1) 

The above cost function expresses the main idea underlying the 
use of information-theoretic concept in channel deconvolution 
applications: the statistical dependence between the current 
output of the SFBF and its previous outputs can be reduced by 
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Figure 2.  Model of transmission system with the basic scheme of soft 

feedback filter 

maximizing the joint entropy in an iterative manner and, hence, 
that leads to reduction of ISI.  

B. Complex domain gradient of  cost function EMJ  

Let the neuron’s complex-valued activation function be 
( ) ( , ) ( , )R R I I R Ig z r z z ir z z= +  where the subscripts R  and I  

indicate the real and imaginary parts of g , respectively, and 

R Iz z iz= + , 1i = − ; for convenience of notation, the symbol 
interval index n  has been dropped. The function ( )g z  is 
assumed to be an appropriate nonlinearity whose properties 
will be discussed later. In the complex-valued case of interest 
here, the input-output relationship of the SFBF can be defined 
by the net  

    ( )( ), , , ,
1

( )
N

R I R I j R j I j R j I
j

z z iz x ix b ib r ir
=

= + = + − + +∑ .   (2) 

It should be noted that for the given complex net the entropy 
EMJ  is a real scalar function of unknown complex 

coefficients. In fact, this is an essential property of the function 
EMJ  that simplifies deriving of its gradient with respect to 

complex coefficients. This simplification is done through use 
of a multidimensional complex gradient vector [11, Ch. 2], 
whose jth element is defined as follows 

 
, ,

j

EM EM
b EM

R j I j

J J
J i

b b
∂ ∂

∇ = +
∂ ∂

, 1,...j N= .             (3) 

In our particular case of the SFBF’s net, the gradient of  

EMJ  with respect to coefficients  { }jb , which is derived in 
[5], is given by 

   ( ) ( ) *
j

rr ri ir ii
b EM R R R I I I n jJ r ir r ir rδ δ −

⎡ ⎤∇ = − + + +⎣ ⎦ ,    (4) 

where * denotes complex conjugation. The respective 
quantities in (4) are the corresponding first and second order 
partial derivatives of the activation function which are defined 

as follows: 
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in (4) that the entropy gradient does not depend explicitly on an 
activation function, but it is governed by the quantities that are 
given as proportions of the corresponding second and first 
order partial derivatives of a complex activation function. 

Let us discuss in more detail the properties of the complex 
function ( )g z . This function need not necessarily be analytic 
[11, Ch. 17], but it is the suitable activation function in the 
sense of properties that provide a stable gradient learning [5] 
and can be summarized as follows: 

P1. ( )g z  is nonlinear in Rz  and Iz .   

P2. For all z  in a bounded domain D , a suitable complex 
activation function ( )g z  must have no singularities (especially 
no poles) and it must be bounded. This property is, in fact, the 
bounded-input bounded-output (BIBO) condition for a 
complex activation function. In other words, the system using 
the activation function ( )g z  must be stable in the BIBO sense. 

P3. The second-order partial derivatives rr
Rr , ri

Rr ,  ii
Ir , ir

Ir  
exist for all z ∈ , and the  corresponding “normalized” 
derivatives rr

R Rrδ ,  ri
R Rrδ , ii

I Irδ  and ir
I Irδ  must be bounded 

since coefficients updating is in quantities proportional to the 
normalized second-order partial derivatives (see (4)). 
Obviously, the derivatives Rδ  and Iδ  must be different from 
zero to avoid an instability.  

P4. The partial derivatives of ( )g z  obey rr ii ir ri
R I I Rr r r r≠ . If 

this condition is not satisfied no learning state is possible for 
both nonzero input ( ),n R Iz z z=  and ( ),n R Iδ δ δ= . 

C.  Stochastic gradient algorithms of  JEM type 
Let us consider a simple complex activation function which 

is described by the input-output equation 

 2( ) ( ) (1 )g z r z z zβ= = +                        (5) 

where β  is a real positive constant. This function has a 
property of mapping a point ( ),R I R Iz z iz z z= + =  on the 
complex plane to a unique point 

( )( ) ( )( )2 2( ) 1 , 1R Ig z z z z zβ β= + +  keeping the same 

phase angle. In addition, the magnitude of the complex 
function ( )g z  is a paraboloid that has the following properties: 
the horizontal cross sections are actually circles, the bottom 
surface is located at the point (0,0)  and the parameter β  
modifies the shape of the surface. In fact, the parameter β  
affects the input-output mapping modifying in the same 
manner both the real and the imaginary parts of activation 
function. Finally, it can be easily proved that this function is 
not analytic, but it satisfies the properties P1-P4. 

For the complex function defined by (5) the stochastic 
gradient algorithm of the JEM type (CJEM) is given by 

,, 1 , n jj n j n b EMb b Jα+ = + ∇ , 

 ( )2 *
, 1 , 1j n j n n n n jb b z z rµ β+ −= − − , 1,...,j N= ,        (6) 

where α  is a positive learning constant and 8µ αβ=  is a step 
size. In Section V., the parameter β  will be used as a tool to 
optimize the convergence characteristics of the CJEM 
algorithm. We have denoted β  as a smoothing parameter 
taking into account its overall effects on the algorithm behavior 
in the Soft-DFE. 

D. Modified CJEM algorithms 
The CJEM algorithm is a key component of the Soft-DFE 

system. As it is mentioned in Section II, in this self-optimized 
scheme the filters B1 and B2 start their adaptation as all-pole 
whiteners in the blind acquisition mode and then, one of them, 
continues adaptation as a part of the SFBF. In this scenario, the 
two variants of the CJEM algorithm are of interest. In the first 
case, by the analogy with the Extended LMS algorithm 
(ELMS) [12], the algorithm (6) can be transformed into the 
corresponding decorrelation algorithm (EJEM) as follows 

 ( )2 *
, 1 , 1j n j n E n E n n jb b u u uµ β+ −= − − , 1,...,j N=     (7) 

where Eµ  is a step size and Eβ  is a parameter that can be  
selected to provide the fast and stable convergence of the 
whiteners.  

The second variant of the CJEM algorithm is the result of 
the structure modification in the basic scheme of the SFBF 
where the hard decision estimates of the transmitted symbols, 

n ja − , feed the feedback filter instead of the soft decisions 

n jr −  (see Fig. 1b). Consequently, the decision-directed variant 
of the CJEM algorithm (DD-CJEM) reads 

 ( ) *2
, 1 , 1 n jj n j n n nb b z z aµ β −+ = − − , 1,...,j N= .         (8) 

The applied modification is a heuristic approach that is 
motivated by the following reasons: 1) the decorrelator R is 
possibly correctly set up during the blind acquisition mode 
because it is an amplitude equalizer performing a speed 
convergence even if a channel is in a deep fade; 2) the 
equalizer T of sufficient length is globally convergent [8]; and 
3) the DD-CJEM algorithm combines the soft error  

( )21n nz zβ−  of the CJEM algorithm and the conventional 

decision-directed method.  
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IV. STABILITY OF DECORRELATOR  
The study of stability of the decorrelation algorithm (7) is 

based on experimental results obtained by the software 
simulator. We have considered the BIBO stability of whiteners 
as a kind of less strict stability condition [12]. As it is known, 
the BIBO stability is a global property over all the time instants 
n  which does not preclude a local instability when, at certain 
time instants n , the predictor exhibits poles outside the unit 
circle. When this happens, the innovation nu  will generally 
present a burst of samples with large amplitudes. A kind of this 
sort of instability is the self-stabilization (SS) phenomenon [12]  
encountered in the adaptive predictor with the ELMS 
algorithm.  Hence, that is the motivation to examine the SS and 
BIBO stability of the EJEM algorithm taking into account the 
decorrelator R has a short-time task in blind acquisition mode 
after which it is suppressed. The results of two stability tests 
are presented as follows: 1) the decorrelator stability (without 
GC) in the case of a sinusoidal disturbance; and 2) the stability 
of the LE in the case of 4QAM signal. For simplicity reason, 
only one whitener is observed in the following tests. 

A. Test 1 
The SS phenomenon is checked for both ELMS and EJEM 

algorithms employing narrowband disturbance. The auto 
regressive model of a pure sinusoidal signal with a random 
phase exhibits two poles on the unit circle. Adding a weak 
noise these poles can be little pushed inside the unit circle but 
they are still a maximal risk of instability for the adaptive 
predictor. Thus, a sinusoidal signal is a simplest example of the 
input disturbing signal 

 ( ) cos(2 ) ( )ns s nT A fnT nTπ ξ η= = + +                  (9) 

where A  is amplitude, f  is frequency, ξ  is a random phase 
with the flat distribution over [ , ]π π−  and ( )nTη  is zero-mean 
noise. The parameters of the signal (9) are selected for test 1 as 
follows: amplitude 1A = , frequency 1800f Hz= , and zero-

mean noise of variance 2 42.5 10ηδ −= ⋅ . The initial values of the 
sixth-order ( 6N = ) whitener are zero. The magnitudes of both  
the most critical coefficient 1,nb  and the innovation nu  have 
been observed through the test and presented in Fig. 3. It 
should be noted that in the ELMS case the bursting drift pushes 

1,nb   towards the unstable region 1, 1nb > , and then the SS 
effect appears, which pushes 1,nb   back to the stable region  

1, 1nb < .  This phenomenon is followed by a kind of BIBO 
stability that is an intermediate situation between desirable 
(permanent) stability and evident (hopeless) instability. To the 
contrary, in the case of EJEM algorithm, the whitener shows 
the instability in this limiting case test; the unbounded output 
(overflow) has happened at 10835t T=  for 5Eβ = . This kind 
of instability is also proved for the smaller values of Eβ .  
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Figure 3.  Sinusoidal disturbance self-stabilization test of  whitener with 
algorithms ELMS and EJEM for 5Eβ =  

B. Test 2 
In this test the 4QAM signal and severe multipath channel 

MP-E are applied (see Section V). The LE is in the blind mode 
of operation over the whole test of duration 60000T . The 
results of this test, the evolution of the magnitude of the first 
coefficient  1,nb   and the MSE at the output of LE are presented 

in Fig. 4. Note the magnitude 1,nb  shows larger fluctuations 
with JEM-W algorithm than in the case of ELMS. However, 
this does not produce any instability: the whitener is BIBO 
stable and, as a consequence, the LE shows the stable MSE 
convergence. To provide a better insight into the stability of the 
whitener the locations of poles of one whitener are presented in 
Fig. 5; these poles are inside the unit circle and their positions 
are very similar for both algorithms at the end of the test of 
duration 60000T  intervals. The corresponding coefficients of 
the sixth-order whitener are given in Table I. 
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Figure 4.  The comparison of  ELMS and EJEM decorrelators in the blind 
mode in the case of 4QAM noiseless system: (a) Evolution of the magnitude 

of the first coefficient of R and (b) MSE convergence at the output of LE 
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Figure 5.  Poles of  whitener with algorithms ELMS and EJEM for 5Eβ =  

TABLE I. THE COEFFICIENTS OF THE  WHITENER AT THE  END OF THE TEST  

 Algorithm EJEM, 5Eβ =  Algorithm ELMS 

kb      Re( )kb       Im( )kb     Re( )kb    Im( )kb  
 1    0.359969      0.353165     0.383821       0.385971 
 2    0.463459     -0.028449   0.435103      -0.002116     
 3    0.043394    0.077096   0.021841       0.075368      
 4  -0.084899      0.000490  -0.080875       0.015623 
 5  -0.046674        -0.035240  -0.026929      -0.059371     
 6   0.039535      0.003342   0.051308      -0.007748     

V. SIMULATION RESULTS 
The Soft-DFE achievements presented in this paper are 

characterized in terms of symbol error rate (SER) and block 
error length (BEL) statistics which are observed in the soft 
transition mode. Also, the convergence characteristics of the 
Soft-DFE are compared with one of the Hard-DFE where the 
same structure is used but with the Extended LMS and 
conventional DD LMS algorithms in the blind and tracking 
modes, respectively, as in [6]. Both equalizers have the same 
lengths of 22T  and 6T  in their linear and recursive parts, 
respectively.  Also, the same two-spike initialization of the 
FSE-CMA and step size are employed in both cases. The 
presented results are obtained using the 16QAM signal and 
multipath channels (MP). These channels are realized by the 
three-ray channel model [8] included in the transmitter filter. 
The amplitude characteristics of the channels for different 
propagation parameters are presented in Fig. 6.  

Let us first describe the transition mode of the Soft-DFE by 
using its convergence characteristics obtained with the Mp 
channels and the signal-to-noise ratio 25.0SNR dB= , Fig. 7. 
The threshold levels 1 1.5TLM dB− =  and 2 8.0TLM dB− = −  
define the beginning and the end of the transition mode, 
respectively. The threshold level 1TLM −  is selected to be 
sufficiently high so that, at the moment of configuration 
switching, the initial burst of errors is certainly present. In fact, 
this is the most critical phase of the Soft-DFE operation when 
several algorithms are directed and slightly coupled by the 
sequence of unreliable symbol estimates: 1) the DD-LMS 
algorithm that adjusts / 2T -FSE; 2) phase-tracking loop that 
rotates a signal constellation; and 3) the DD-CJEM algorithm. 

Fig. 8 presents the results of the SER versus the smoothing 
parameter β  which are averaged over 200 independent runs. 
The SER is measured during 1500 symbol intervals period that, 
in the case of severe-ISI channels, Mp=(C,D,E,F,G,H), roughly 
corresponds to equalizer’s convergence time between the 
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Figure 6.  Amplitude response of  MP channels (A,B,C,D,E,F,G,H)    
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Figure 7.  MSE convergence characteristics of the Soft-DFE with MP 
channels for 1Eβ =  and 10β =  
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Figure 8.  Symbol error rate versus β  in transition mode: 
Mp=(A,B,C,D,E,F,G,H), 16QAM, SNR=25 dB 

1TLM −  and 2TLM −  thresholds. Obviously, for these channels, 
the SER decreases with increasing β  in a similar manner. This 
behavior clearly indicates the capability of DD-CJEM to 
mitigate error propagation to some extent. These results are 
followed by the block error length statistics given in Table II 
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for the lengths from 2 to 8 in T  intervals; the BEL=8 also 
includes longer burst errors. The numbers of failed activations 
(FAs) of equalizers during the Monte Carlo test are given in the 
last column of the table. It should be noted that the long block 
errors have disappeared and the number of short blocks is 
reduced for β  in range { }10,14 . Also, the SER and BEL 
statistics, which are introduced as a measure of the error 
propagation phenomenon, are not critically sensitive for a wide 
range of values of the smoothing parameter. On the other hand, 
the Hard-DFE yields similar SER results, but it suffers from the 
increased number of long burst errors the consequence of 
which is the activation fail of the equalizer. 

The presented SER and BEL statistics have proved the 
ability of the new algorithms to mitigate the error propagation 
effects. Also, these results indicate that improved burst error 
statistics (no long burst errors) can be transformed into a larger 
channel coding gain in systems with separate equalization and 
decoding scheme.  

TABLE II.  BLOCK ERROR  LENGTH  STATISTICS FOR  CHANNEL MP-E 

BEL/ β  2 3 4 5 6 7 8 FA 

2 70 29 13 7 3 2 2 40 
4 39 15 6 3 1 0 1 4 
6 26 10 4 2 1 0 0 0 
8 22 8 3 1 1 0 0 1 
10 20 6 2 1 0 0 0 0 
12 19 6 2 1 0 0 0 1 
14 20 5 2 1 0 0 0 1 

Hard-DFE 22 2 0 0 0 0 0 4 
 

In Fig. 9 the overall convergence characteristics of Soft-
DFE are presented for different values of β . For the purpose 
of comparison, the convergence characteristics of the Hard-
DFE and “trained” Soft-DFE solutions are also presented. The 
“trained” denotes the Soft-DFE which directly switches from 
the blind mode to the actually trained adaptation based on the 
LMS algorithm and desired symbols na . As we can see the  
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Figure 9.  MSE convergence:  Soft-DFE with DD-CJEM algorithm in 

transition mode for different values of  β  is compared with the “trained”  
Soft-DFE and the Hard-DFE 

Soft-DE strikes the best MSE convergence characteristics with 
increasing β  where they show a kind of saturation for 8β > . 
On the other hand, for smaller values of β , the performance of 
DD-CJEM algorithm deteriorates so that both the speed of 
convergence and MMSE become unacceptable. In the special 
case of 1β = , the performances of the DD-CJEM are 
considerably degraded. Also, it should be noted that the Soft-
DFE is not inferior in comparison with the “trained” Soft-DFE. 

VI. CONCLUSIONS 
The purpose of this contribution is to discuss in some detail 

the behavior of the self-optimized DFE based on the complex-
valued neuron of the Bell-Sejnowski class in order to find a 
relationship between the smoothing parameter of the chosen 
activation function and the error propagation effects and, 
hence, the convergence characteristics. The presented 
simulation results have proved the ability of the new algorithm 
to mitigate the error propagation effects for a wide range of 
values of the smoothing parameter. In particular, it is possible 
to determine the range of values of β  that provides the best 
performance of the algorithm for a known signal constellation. 
Consequently, for the selected β , the proposed DD-CJEM 
algorithm is of the same low computation complexity as the 
CMA. 
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