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Blind DFE With Maximum-Entropy Feedback

Vladimir R. Krsti¢, Member, IEEE. and Miroslav L. Dukié, Member, IEEE

Abstract—This letter proposes an entropy-gradient adaptive
feedback filter specially derived for the blind decision feedback
equalizer with a self-optimized configuration. Using software
simulations, the parametric nonlinearity of the feedback filter
is aligned through two operation modes—blind acquisition and
soft transition—to respond with a maximum entropy signal. As a
result, a simple stochastic gradient algorithm is obtained, and it
can be easily optimized for an applied signal constellation.

Index Terms—Blind decision feedback equalizer (DFE), max-
imum-entropy feedback filter.

[. INTRODUCTION

HIS letter addresses the blind equalization of linear
T time-invariant channels by a decision feedback equalizer
(DFE) in quadrature amplitude modulation (QAM) systems.
The acute drawback of a classical DFE scheme using hard
decision feedback loop is the possibility of a disastrous error
propagation that emerges immediately at the presence of data
and prevents its activation. To “skip” this burden of errors,
Labat er al. [I] proposed a self-optimized DFE (SO-DFE)
scheme that optimizes both the structure and the adaptation
criteria. At the start, the SO-DFE decomposes the structure
into a cascade of linear adaptive devices performing a difficult
blind equalization task step by step, and then, when a signal
eye is open enough, switches the structure back so that the
decision-directed minimum mean-square error (DD MMSE)
adaptation can commence. Although the SO-DFE works rea-
sonably well, its overall convergence achievements are not very
impressive in severe fading environments since its least mean
square (LMS)-based feedback filter cannot meet the learning
ability to compensate for deep spectral nulls in the transmission
passband.

The noted weakness of the feedback filter can be remark-
ably mitigated using Shannon’s entropy measure [2] suitably
transformed into the joint entropy maximization criterion (JEM)
[3]. Based on this concept, in [4], the complex stochastic-en-
tropy-gradient algorithm has been derived for the recursive part
of the SO-DFE. As a continuation of that research, in this letter,
we explore how the shape parameter /3 of the complex-valued
nonlinearity ¢(z) = =(1 + f]z|*). which is involved into the
feedback filter, influences the convergence ol the SO-DFE. It

is shown via simulations that the practicable range of values of
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Fig. 1. Soft-DFE configurations in (a) blind acquisition and (b) soft transition
mode. SFBFis given by basic (solid bold lines) and modified (dashed bold lines)
schemes.

the shape parameter can be determined for an applied signal.
This design approach leads to stochastic gradient algorithims
that evade the adaptive shape-fitting of the nonlinearity.

II. SOoFr-DFE STRUCTURE

The innovated SO-DFE, termed Soft-DFE, combines sev-
eral adaptation criteria through three operation modes. In the
blind acquisition, the Soft-DFE acts as a linear 2/T-spaced
equalizer (T is the symbol interval) including four adaptive
transformers in the cascade—gain control (G'C'), decorrelator
(1?). fractionally-spaced equalizer (7'), and phase rotator
(PP I)—where It and T perform the most critical subtasks; see
Fig. I(a). The decorrelator I, which consists of two indepen-
dent purely recursive filters (whiteners) with coefficient vectors

b, = [h,_t.....b,-_‘\-]". t = 1, 2, compensates the channel
attenuation distortion while the equalizer 1", which is defined
by coefficient vectors ¢; = [¢;q,....¢i1] e compensates the

phase distortion introduced by the channel-decorrelator com-
bination. The adaptation of /& and 1" is decoupled and based
on the JEM [4] and the constant modulus algorithm (CMA)
[5], respectively. In the next stage, named the soft transition
mode, one of the two whiteners—selected according o energy
criterion—becomes the soft feedback filter (SFBF) keeping on
the JEM adaptation and the equalizer 1" switches the algorithm
from CMA to DD LMS; see Fig 1(b). Finally, when the signal
eye is open enough, the SFBF switches into the DD LMS
adaptation (tracking mode). In the described scheme, the (/¢!
and I’ I? are implemented in a similar way as in [ 1].

III. ENTROPY-GRADIENT ALGORITHMS FOR FEEDBACK FILTER

Let us recall the JEM criterion Jpyy = F{lo|dr, [0z, }
[3]. where z, is the input of the monotonically increasing func-
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tion ¢(z,) and I denotes expectation. Based on the informa-
tion-theoretic principles [2], a suitably selected nonlinearity in
the given structure [basic scheme in Fig. 1(b)] maximizes the
joint entropy of the equalizer output r,, = ¢(z, ), and by doing
so, the intersymbol interference (ISI) removing will result. The
JEM criterion was derived assuming the following real-valued
system model: 1) a zero-mean i.i.d. non-Gaussian sequence .,
is applied to a linear noiseless channel; 2) the probability density
function (pdf) of the IS1 is unknown; and 3) the previous outputs
of the SFBF are correct, ie., ry—j = ay—j. J = 1,0, N. Ex-
tending the described model into the complex domain, we have
derived in [4] the JEM-type stochastic gradient algorithms for
the recursive part of the Soft-DFE.

In the particular case of the complex-valued nonlinearity
g(zn) = 2z, (1 + [d|z,]*). which is continuously differentiable
and bounded-input bounded-output (BIBO) stable [4]. the
JEM-type stochastic gradient algorithm reads

— Blzal*) iy F=10en, N (1)

h_;.n +1 = ""‘,n.u — JLZy (I

where ;1 denoles a step size and /4 is a real positive constant. The
algorithm (1) represents the basic learning rule for the SFBF
where ¢,, = 2z, (1 — ;f\:,,_\! ) can be viewed as a soft error signal,
the quality of which depends on the shape parameter /3. Having
in mind that 12 changes its position with respect to T during the
adaptation process (see Fig. 1), the selection of (3 has to take
into consideration the two operation modes: blind acquisition
and soft transition,

In the first case, the soft decisions 7, _; in (1) are replaced
by their linearized counterparts z,, ;. This approximation has
a twofold effect. First, the basic soft feedback filter becomes
a purely recursive whitener. Second, the JEM algorithm is re-
duced to the corresponding whitening algorithm (JEM-W)

(2)
where Ji1- denotes a step size and - stands for a whitening pa-
rameter. Note that the stochastic gradient in (2) does not depend
on the previous innovations ,,_; but only on the current one.
In fact, the gradient in (2) is calculated as if the JEM-whitener
was nonrecursive. Let us recall that the same situation holds for
the extended LMS algorithm [ 1], which can be seen as a special
case of the JEM-W for v = 2/|u,|*. A major feature of the
JEM-W is its prediction error e, ( () that gains the information
content of the most faded components of input . At the same
time, it should be noted that the potential risk of instability is
much higher than in the case of LMS whitening. Although it is
still an open question currently under study, the BIBO stability
of JEM-whitener has been proved for QAM signals [6].

In the second case, the heuristic modification of the basic
SFBF scheme is done in a way that the hard decision device
is turned back into the SFBF [see the modified scheme in Fig.
I(b)]. Now the hard decision estimates of the transmitted sym-
bols a,, _; feed the feedback filter instead of the soft decisions

- FATRE
Binsr =bin — pvten (1 — ot ) Ugy— g0

r,—;. Consequently, the decision-directed variant of the JEM
algorithm (DD-JEM) is obtained

Djmit =bjn — pin (l - ;"!U\:,,F) u.f,_J. J=1,....N.
(3)

The above algorithm combines the solt errors e, (Fp) and
hard symbol estimates 7, ; that may be unreliable at the
moment of structure switching. For a reasonably selected
switching threshold level between blind and soft transition
mode, the quality of the symbol estimates mostly depends on
convergence capabilities of the JEM-W and CMA algorithms
(previous equalization subtasks) as well as on the current error
en(4p). Thus, by using the improvement opportunity of the
parameters Jy and fp in JEM-W and DD-JEM, respectively,
the above heuristic modification can be justified.

To assess the effects of 7 = {fw,[fp} on the JEM algo-
rithms and to estimate their useful ranges of values for an ap-
plied signal constellation, the convergence features of the algo-
rithms are evaluated via software simulations. The influence of
[ is observed at the output of T' that maximizes the absolute
kurtosis of 1,,. In this context, the CMA is not seen as a constant
modulus criterion [7] but rather as a special case of the kurtosis
maximization criterion in the case of sub-Gaussian inputs [8]. In
that sense, the absolute normalized kurtosis can be estimated by
formulas K, = (l/;’}z;")__L K, and K; = K(yi o)/ K(u,) =

Uil /lleallal ', where lle,ll, =[S£ fesalt) . This kur-
tosis estimation method relies on a one-by-one correspondence
between the stationary points in system {channel-cqualizer) and
equalizer domains [9]. On the other hand, the influence of ), is
assessed by means of symbol error rate (SER) that is measured
during the soft-transition mode. In fact, the SER has been con-
sidered as a figure of merit for the error propagation effects.

C;

IV. SIMULATION RESULTS
The Soft-DFE features are characterized in terms of the kur-
tosis i, SER, and overall MSE convergence. Also, the MSE
convergence of the Soft-DFE and SO-DFE (termed Hard-DFE)
are compared. The only difference between these two solutions

~is the adaptation method applied to their recursive parts: the

Soft-DFE relies on JEM and the Hard-DFE on LMS-type al-
gorithms [1]. The simulations are carried out using 16- and
32-QAM signals and fading channels under a signal-to-noisc
ratio of 25 dB. The three-ray channel model [7] is involved into
the transmitter filter; Fig. 2 depicts the attenuation response of
filter-channel combinations Mp-(A.B.C,D,E) for different prop-
agation parameters selected to gradually increase the level of
ISI. The length of both equalizers is [, = 22 and N = 6
in their T and 2 parts, respectively. The initial vectors of T’
are with zero components except the centered (reference) ones
¢1.. = co, = L. The presented results are averaged over 200
Monte Carlo runs.

The equalizers switching threshold level is defined in term of
the output MSE which is estimated in a similar way as in [1].
The Soft-DFE switches from blind to soft transition mode at
the threshold level of 1.5 dB and then the soft transition con-
tinues during the next 2000 symbol intervals. This time period
has been decided (o be long enough for a signal eye opening
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to be completed with a high probability of success. After that,

the SFBF adaptation switches from DD-JEM to DD-LMS al-
gorithm. On the other hand, the Hard-DFE directly switches, at
the above threshold level, from blind acquisition to conventional
DD LMS tracking.

The maximal kurtosis yields K, ;g achieved by 16-QAM
signal for different values of /Jyy- are depicted in Fig. 3; the corre-
sponding curves for 32-QAM closely follow the presented ones.
The kurtosis growth, which is similar for all channels, shows the
ability of the JEM-W to improve a channel conditioning. Similar
results can also be expected for other QAM signals and chan-
nels, In the next steps, this feature of the JEM-W is taken as a
design guideline to consider in more detail the JEM whitening
in the Hyy range from 0.8 to 2.0. For the sake of comparison,
the corresponding kurtosis K 1 a5, obtained by Hard-DFE and
16-QAM. is (0.76, 0.47, 0.57, 0.45, (0.59) for Mp-(A,B,C.D,E)
channel. respectively. It is easy to see that these Kurtosis values
are approximately the same as the corresponding K,y for
e = 0.15.
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The SER versus (3 is shown in Fig. 4. The provided curves
indicate the capability of DD-JEM to mitigate the error propa-
gation. Independently of channels, these curves present minima
for the same optimal value of (4, that can be estimated as
Poae = 12 and SBpge = 10 for 16- and 32-QAM signals,
respectively. In fact, selecting /45 in this way, we have fitted the
shape of g(z) which makes the pdf of its output to appear more
flat [2]. Associated with this ability of the SFBF, the relation
Hpae < Bp g indicates that the intersymbol interference that
comes from 16-QAM has a more “peaked” pdfl than is the
one of 32-QAM; recall that the optimal slope of a sigmoid
maximizing entropy is inversely proportional to the variance of
its input distribution [2], [10].

Now, when we have in hand the optimal values of [f for
given signals, we can refine the influence of parameter /iy
on the Soft-DFE convergence. Fig. 5 depicts the MSE conver-
gence characteristics for different values of fyy-: they present a
gradual improvement of both the speed and the residual error
for 16-QAM and - in the range of {0.8, 2.0}, while in the
case of 32-QAM, the corresponding range of iy is a litle
smaller {0.8, 1.4}. Moreover, the positions of SER minima have
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stayed unchanged over the observed ranges of [y (see Fig. 4).
Finally, the test of comparison of the Soft-DFE and Hard-DFE
is presented in Fig. 6. For the moderate channel Mp-A, the
convergence characteristics of both solutions are similar, but
with the severe channels MP-(B,D,E) the Hard-DFE is inferior
to the Soft-DFE. In the latter case, the Hard-DFE shows a slow
blind acquisition and a high percentage of failed transitions
from blind to tracking mode.

V. CONCLUSIONS

This letter presents the performance of the entropy-based sto-
chastic gradient algorithms, which are derived for the recursive
part of the self-optimized DFE. It is shown that the shape of the
nonlinearity can be optimized for 16- and 32-QAM signals so
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and Hard-DFE for Mp-(A,B.D,E).

that the soft feedback filter responds with minimal error prop-
agation. Also, the optimal values ol the shape parameters are
practically channel-independent and can be verified via simula-
tions for any other QAM signal. The overall performance tests
have confirmed the superiority of the new DFE over the DFE
solution based on the traditional LMS-type algorithms.
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